Sunday, December 29, 2019

Extracting Feature Importances from Scikit-Learn Pipelines


Simple pipeline

import pandas as pd
import numpy as npfrom sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.metrics import f1_score
from sklearn.preprocessing import OneHotEncoder
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.metrics import classification_report
from sklearn.linear_model import LogisticRegressionimport eli5
train_values = pd.read_csv('train_values.csv')
train_labels = pd.read_csv('train_labels.csv')
train_data = train_values.merge(train_labels, left_on='building_id', right_on='building_id')
train_data.dtypes
train_data = train_data.drop('building_id', axis=1)numeric_features = train_data.select_dtypes(include=['int64', 'float64']).drop(['damage_grade'], axis=1).columns
categorical_features = train_data.select_dtypes(include=['object']).columns
X = train_data.drop('damage_grade', axis=1)
y = train_data['damage_grade']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
numeric_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='median')),
    ('scaler', StandardScaler())])
categorical_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
    ('one_hot', OneHotEncoder())])
preprocessor = ColumnTransformer(
    transformers=[
        ('num', numeric_transformer, numeric_features),
        ('cat', categorical_transformer, categorical_features)
    ])pipe = Pipeline(steps=[('preprocessor', preprocessor),
                      ('classifier',  LogisticRegression(class_weight='balanced', random_state=0))])
    
model = pipe.fit(X_train, y_train)
target_names = y_test.unique().astype(str)
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred, target_names=target_names))

ELI5

pip install eli5conda install -c conda-forge eli5
onehot_columns = list(pipe.named_steps['preprocessor'].named_transformers_['cat'].named_steps['one_hot'].get_feature_names(input_features=categorical_features))
numeric_features_list = list(numeric_features)
numeric_features_list.extend(onehot_columns)
eli5.explain_weights(pipe.named_steps['classifier'], top=50, feature_names=numeric_features_list)

No comments:

Must Watch YouTube Videos for Databricks Platform Administrators

  While written word is clearly the medium of choice for this platform, sometimes a picture or a video can be worth 1,000 words. Below are  ...