Ultimate Python Cheat Sheet: Practical Python For Everyday Tasks
This Cheat Sheet was born out of necessity. Recently, I was tasked with diving into a new Python project after some time away from the language.
I’ve always appreciated Python’s practical syntax and form. However, being in Node/Typescript land for some time, I found myself in need of a rapid refresher on Python’s latest features, best practices, and most impactful tools. I needed to get back up to speed quickly without getting bogged down in the minutiae so I compiled this list so that I could reference the tasks and features I needed to use the most often. Essentially, to grasp the essential 20% of Python that addresses 80% of the programming needs I would encounter.
This guide is the culmination of that journey, offering a collection of the most practical Python knowledge, insights, and useful libraries that I encountered along the way. It’s designed to share my learning that I found most valuable, presented in a way that’s immediately applicable to your projects and challenges.
I’ve broken up the sections into logical areas that typically work together so that you can jump to an area you are interested in and find the most related items to that particular task or subject. This will include file operations, API interactions, spreadsheet manipulation, mathematical computations, and working with data structures like lists and dictionaries. Additionally, I’ll highlight some useful libraries to enhance your Python toolkit that are prevalent in the domains Python is typically used.
If you think I missed anything that should be included in the Cheat Sheet, please let me know in the comments and I’ll update the list!
Working With Files
1. Reading a File
To read the entire content of a file:
with open('example.txt', 'r') as file:
content = file.read()
print(content)
2. Writing to a File
To write text to a file, overwriting existing content:
with open('example.txt', 'w') as file:
file.write('Hello, Python!')
3. Appending to a File
To add text to the end of an existing file:
with open('example.txt', 'a') as file:
file.write('\nAppend this line.')
4. Reading Lines into a List
To read a file line by line into a list:
with open('example.txt', 'r') as file:
lines = file.readlines()
print(lines)
5. Iterating Over Each Line in a File
To process each line in a file:
with open('example.txt', 'r') as file:
for line in file:
print(line.strip())
6. Checking If a File Exists
To check if a file exists before performing file operations:
import os
if os.path.exists('example.txt'):
print('File exists.')
else:
print('File does not exist.')
7. Writing Lists to a File
To write each element of a list to a new line in a file:
lines = ['First line', 'Second line', 'Third line']
with open('example.txt', 'w') as file:
for line in lines:
file.write(f'{line}\n')
8. Using With Blocks for Multiple Files
To work with multiple files simultaneously using with
blocks:
with open('source.txt', 'r') as source, open('destination.txt', 'w') as destination:
content = source.read()
destination.write(content)
9. Deleting a File
To safely delete a file if it exists:
import os
if os.path.exists('example.txt'):
os.remove('example.txt')
print('File deleted.')
else:
print('File does not exist.')
10. Reading and Writing Binary Files
To read from and write to a file in binary mode (useful for images, videos, etc.):
# Reading a binary file
with open('image.jpg', 'rb') as file:
content = file.read()
# Writing to a binary file
with open('copy.jpg', 'wb') as file:
file.write(content)
Working With Simple HTTP APIs
1. Basic GET Request
To fetch data from an API endpoint using a GET request:
import requests
response = requests.get('https://api.example.com/data')
data = response.json() # Assuming the response is JSON
print(data)
2. GET Request with Query Parameters
To send a GET request with query parameters:
import requests
params = {'key1': 'value1', 'key2': 'value2'}
response = requests.get('https://api.example.com/search', params=params)
data = response.json()
print(data)
3. Handling HTTP Errors
To handle possible HTTP errors gracefully:
import requests
response = requests.get('https://api.example.com/data')
try:
response.raise_for_status() # Raises an HTTPError if the status is 4xx, 5xx
data = response.json()
print(data)
except requests.exceptions.HTTPError as err:
print(f'HTTP Error: {err}')
4. Setting Timeout for Requests
To set a timeout for API requests to avoid hanging indefinitely:
import requests
try:
response = requests.get('https://api.example.com/data', timeout=5) # Timeout in seconds
data = response.json()
print(data)
except requests.exceptions.Timeout:
print('The request timed out')
5. Using Headers in Requests
To include headers in your request (e.g., for authorization):
import requests
headers = {'Authorization': 'Bearer YOUR_ACCESS_TOKEN'}
response = requests.get('https://api.example.com/protected', headers=headers)
data = response.json()
print(data)
6. POST Request with JSON Payload
To send data to an API endpoint using a POST request with a JSON payload:
import requests
payload = {'key1': 'value1', 'key2': 'value2'}
headers = {'Content-Type': 'application/json'}
response = requests.post('https://api.example.com/submit', json=payload, headers=headers)
print(response.json())
7. Handling Response Encoding
To handle the response encoding properly:
import requests
response = requests.get('https://api.example.com/data')
response.encoding = 'utf-8' # Set encoding to match the expected response format
data = response.text
print(data)
8. Using Sessions with Requests
To use a session object for making multiple requests to the same host, which can improve performance:
import requests
with requests.Session() as session:
session.headers.update({'Authorization': 'Bearer YOUR_ACCESS_TOKEN'})
response = session.get('https://api.example.com/data')
print(response.json())
9. Handling Redirects
To handle or disable redirects in requests:
import requests
response = requests.get('https://api.example.com/data', allow_redirects=False)
print(response.status_code)
10. Streaming Large Responses
To stream a large response to process it in chunks, rather than loading it all into memory:
import requests
response = requests.get('https://api.example.com/large-data', stream=True)
for chunk in response.iter_content(chunk_size=1024):
process(chunk) # Replace 'process' with your actual processing function
Working With Lists
1. Creating a List
To conjure a list into being:
# A list of mystical elements
elements = ['Earth', 'Air', 'Fire', 'Water']
2. Appending to a List
To append a new element to the end of a list:
elements.append('Aether')
3. Inserting into a List
To insert an element at a specific position in the list:
# Insert 'Spirit' at index 1
elements.insert(1, 'Spirit')
4. Removing from a List
To remove an element by value from the list:
elements.remove('Earth') # Removes the first occurrence of 'Earth'
5. Popping an Element from a List
To remove and return an element at a given index (default is the last item):
last_element = elements.pop() # Removes and returns the last element
6. Finding the Index of an Element
To find the index of the first occurrence of an element:
index_of_air = elements.index('Air')
7. List Slicing
To slice a list, obtaining a sub-list:
# Get elements from index 1 to 3
sub_elements = elements[1:4]
8. List Comprehension
To create a new list by applying an expression to each element of an existing one:
# Create a new list with lengths of each element
lengths = [len(element) for element in elements]
9. Sorting a List
To sort a list in ascending order (in-place):
elements.sort()
10. Reversing a List
To reverse the elements of a list in-place:
elements.reverse()
Working With Dictionaries
1. Creating a Dictionary
To forge a new dictionary:
# A tome of elements and their symbols
elements = {'Hydrogen': 'H', 'Helium': 'He', 'Lithium': 'Li'}
2. Adding or Updating Entries
To add a new entry or update an existing one:
elements['Carbon'] = 'C' # Adds 'Carbon' or updates its value to 'C'
3. Removing an Entry
To banish an entry from the dictionary:
del elements['Lithium'] # Removes the key 'Lithium' and its value
4. Checking for Key Existence
To check if a key resides within the dictionary:
if 'Helium' in elements:
print('Helium is present')
5. Iterating Over Keys
To iterate over the keys in the dictionary:
for element in elements:
print(element) # Prints each key
6. Iterating Over Values
To traverse through the values in the dictionary:
for symbol in elements.values():
print(symbol) # Prints each value
7. Iterating Over Items
To journey through both keys and values together:
for element, symbol in elements.items():
print(f'{element}: {symbol}')
8. Dictionary Comprehension
To conjure a new dictionary through an incantation over an iterable:
# Squares of numbers from 0 to 4
squares = {x: x**2 for x in range(5)}
9. Merging Dictionaries
To merge two or more dictionaries, forming a new alliance of their entries:
alchemists = {'Paracelsus': 'Mercury'}
philosophers = {'Plato': 'Aether'}
merged = {**alchemists, **philosophers} # Python 3.5+
10. Getting a Value with Default
To retrieve a value safely, providing a default for absent keys:
element = elements.get('Neon', 'Unknown') # Returns 'Unknown' if 'Neon' is not found
Working With The Operating System
1. Navigating File Paths
To craft and dissect paths, ensuring compatibility across realms (operating systems):
import os
# Craft a path compatible with the underlying OS
path = os.path.join('mystic', 'forest', 'artifact.txt')
# Retrieve the tome's directory
directory = os.path.dirname(path)
# Unveil the artifact's name
artifact_name = os.path.basename(path)
2. Listing Directory Contents
To reveal all entities within a mystical directory:
import os
contents = os.listdir('enchanted_grove')
print(contents)
3. Creating Directories
To conjure new directories within the fabric of the filesystem:
import os
# create a single directory
os.mkdir('alchemy_lab')
# create a hierarchy of directories
os.makedirs('alchemy_lab/potions/elixirs')
4. Removing Files and Directories
To erase files or directories, banishing their essence:
import os
# remove a file
os.remove('unnecessary_scroll.txt')
# remove an empty directory
os.rmdir('abandoned_hut')
# remove a directory and its contents
import shutil
shutil.rmtree('cursed_cavern')
5. Executing Shell Commands
To invoke the shell’s ancient powers directly from Python:
import subprocess
# Invoke the 'echo' incantation
result = subprocess.run(['echo', 'Revealing the arcane'], capture_output=True, text=True)
print(result.stdout)
6. Working with Environment Variables
To read and inscribe upon the ethereal environment variables:
import os
# Read the 'PATH' variable
path = os.environ.get('PATH')
# Create a new environment variable
os.environ['MAGIC'] = 'Arcane'
7. Changing the Current Working Directory
To shift your presence to another directory within the filesystem:
import os
# Traverse to the 'arcane_library' directory
os.chdir('arcane_library')
8. Path Existence and Type
To discern the existence of paths and their nature — be they file or directory:
import os
# Check if a path exists
exists = os.path.exists('mysterious_ruins')
# Ascertain if the path is a directory
is_directory = os.path.isdir('mysterious_ruins')
# Determine if the path is a file
is_file = os.path.isfile('ancient_manuscript.txt')
9. Working with Temporary Files
To summon temporary files and directories, fleeting and ephemeral:
import tempfile
# Create a temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False)
print(temp_file.name)
# Erect a temporary directory
temp_dir = tempfile.TemporaryDirectory()
print(temp_dir.name)
10. Getting System Information
To unveil information about the host system, its name, and the enchantments it supports:
import os
import platform
# Discover the operating system
os_name = os.name # 'posix', 'nt', 'java'
# Unearth detailed system information
system_info = platform.system() # 'Linux', 'Windows', 'Darwin'
Working With CLI — STDIN, STDOUT, STDERR
1. Reading User Input
Getting input from STDIN:
user_input = input("Impart your wisdom: ")
print(f"You shared: {user_input}")
2. Printing to STDOUT
To print messages to the console:
print("Behold, the message of the ancients!")
3. Formatted Printing
To weave variables into your messages with grace and precision:
name = "Merlin"
age = 300
print(f"{name}, of {age} years, speaks of forgotten lore.")
4. Reading Lines from STDIN
Trim whitespaces line by line from STDIN:
import sys
for line in sys.stdin:
print(f"Echo from the void: {line.strip()}")
5. Writing to STDERR
To send message to STDERR:
import sys
sys.stderr.write("Beware! The path is fraught with peril.\n")
6. Redirecting STDOUT
To redirect the STDOUT:
import sys
original_stdout = sys.stdout # Preserve the original STDOUT
with open('mystic_log.txt', 'w') as f:
sys.stdout = f # Redirect STDOUT to a file
print("This message is inscribed within the mystic_log.txt.")
sys.stdout = original_stdout # Restore STDOUT to its original glory
7. Redirecting STDERR
Redirecting STDERR:
import sys
with open('warnings.txt', 'w') as f:
sys.stderr = f # Redirect STDERR
print("This warning is sealed within warnings.txt.", file=sys.stderr)
8. Prompting for Passwords
To prompt for passwords:
import getpass
secret_spell = getpass.getpass("Whisper the secret spell: ")
9. Command Line Arguments
Working with and parsing command line arguments:
import sys
# The script's name is the first argument, followed by those passed by the invoker
script, first_arg, second_arg = sys.argv
print(f"Invoked with the sacred tokens: {first_arg} and {second_arg}")
10. Using Argparse for Complex CLI Interactions
Adding descriptions and options/arguments:
import argparse
parser = argparse.ArgumentParser(description="Invoke the ancient scripts.")
parser.add_argument('spell', help="The spell to cast")
parser.add_argument('--power', type=int, help="The power level of the spell")
args = parser.parse_args()
print(f"Casting {args.spell} with power {args.power}")
Working With Mathematical Operations and Permutations
1. Basic Arithmetic Operations
To perform basic arithmetic:
sum = 7 + 3 # Addition
difference = 7 - 3 # Subtraction
product = 7 * 3 # Multiplication
quotient = 7 / 3 # Division
remainder = 7 % 3 # Modulus (Remainder)
power = 7 ** 3 # Exponentiation
2. Working with Complex Numbers
To work with complex numbers:
z = complex(2, 3) # Create a complex number 2 + 3j
real_part = z.real # Retrieve the real part
imaginary_part = z.imag # Retrieve the imaginary part
conjugate = z.conjugate() # Get the conjugate
3. Mathematical Functions
Common math functions:
import math
root = math.sqrt(16) # Square root
logarithm = math.log(100, 10) # Logarithm base 10 of 100
sine = math.sin(math.pi / 2) # Sine of 90 degrees (in radians)
4. Generating Permutations
Easy way to generate permutations from a given set:
from itertools import permutations
paths = permutations([1, 2, 3]) # Generate all permutations of the list [1, 2, 3]
for path in paths:
print(path)
5. Generating Combinations
Easy way to generate combinations:
from itertools import combinations
combos = combinations([1, 2, 3, 4], 2) # Generate all 2-element combinations
for combo in combos:
print(combo)
6. Random Number Generation
To get a random number:
import random
num = random.randint(1, 100) # Generate a random integer between 1 and 100
7. Working with Fractions
When you need to work with fractions:
from fractions import Fraction
f = Fraction(3, 4) # Create a fraction 3/4
print(f + 1) # Add a fraction and an integer
8. Statistical Functions
To get Average, Median, and Standard Deviation:
import statistics
data = [1, 2, 3, 4, 5]
mean = statistics.mean(data) # Average
median = statistics.median(data) # Median
stdev = statistics.stdev(data) # Standard Deviation
9. Trigonometric Functions
To work with trigonometry:
import math
angle_rad = math.radians(60) # Convert 60 degrees to radians
cosine = math.cos(angle_rad) # Cosine of the angle
10. Handling Infinity and NaN
To work with Infinity and NaN:
import math
infinity = math.inf # Representing infinity
not_a_number = math.nan # Representing a non-number (NaN)
Working With Databases
1. Establishing a Connection
To create a connection to a Postgres Database:
import psycopg2
connection = psycopg2.connect(
dbname='your_database',
user='your_username',
password='your_password',
host='your_host'
)
2. Creating a Cursor
To create a database cursor, enabling the traversal and manipulation of records:
cursor = connection.cursor()
3. Executing a Query
Selecting data from Database:
cursor.execute("SELECT * FROM your_table")
4. Fetching Query Results
Fetching data with a cursor:
records = cursor.fetchall()
for record in records:
print(record)
5. Inserting Records
To insert data into tables in a database:
cursor.execute("INSERT INTO your_table (column1, column2) VALUES (%s, %s)", ('value1', 'value2'))
connection.commit() # Seal the transaction
6. Updating Records
To alter the records:
cursor.execute("UPDATE your_table SET column1 = %s WHERE column2 = %s", ('new_value', 'condition_value'))
connection.commit()
7. Deleting Records
To delete records from the table:
cursor.execute("DELETE FROM your_table WHERE condition_column = %s", ('condition_value',))
connection.commit()
8. Creating a Table
To create a new table, defining its structure:
cursor.execute("""
CREATE TABLE your_new_table (
id SERIAL PRIMARY KEY,
column1 VARCHAR(255),
column2 INTEGER
)
""")
connection.commit()
9. Dropping a Table
To drop a table:
cursor.execute("DROP TABLE if exists your_table")
connection.commit()
10. Using Transactions
To use transactions for atomicity:
try:
cursor.execute("your first transactional query")
cursor.execute("your second transactional query")
connection.commit() # Commit if all is well
except Exception as e:
connection.rollback() # Rollback in case of any issue
print(f"An error occurred: {e}")
Working With Async IO (Asyncrounous Programming)
1. Defining an Asynchronous Function
To declare an async function:
import asyncio
async def fetch_data():
print("Fetching data...")
await asyncio.sleep(2) # Simulate an I/O operation
print("Data retrieved.")
2. Running an Asynchronous Function
To invoke an asynchronous function and await them:
async def main():
await fetch_data()
asyncio.run(main())
3. Awaiting Multiple Coroutines
To invoke multiple async functions and await all:
async def main():
task1 = fetch_data()
task2 = fetch_data()
await asyncio.gather(task1, task2)
asyncio.run(main())
4. Creating Tasks
To dispatch tasks:
async def main():
task1 = asyncio.create_task(fetch_data())
task2 = asyncio.create_task(fetch_data())
await task1
await task2
asyncio.run(main())
5. Asynchronous Iteration
To traverse through asynchronously, allowing time for other functions in between:
async def fetch_item(item):
await asyncio.sleep(1) # Simulate an I/O operation
print(f"Fetched {item}")
async def main():
items = ['potion', 'scroll', 'wand']
for item in items:
await fetch_item(item)
asyncio.run(main())
6. Using Asynchronous Context Managers
To ensure resources are managed within the bounds of an asynchronous function:
async def async_context_manager():
print("Entering context")
await asyncio.sleep(1)
print("Exiting context")
async def main():
async with async_context_manager():
print("Within context")
asyncio.run(main())
7. Handling Exceptions in Asynchronous Code
To gracefully catch and manage the errors with async functions:
async def risky_spell():
await asyncio.sleep(1)
raise ValueError("The spell backfired!")
async def main():
try:
await risky_spell()
except ValueError as e:
print(f"Caught an error: {e}")
asyncio.run(main())
8. Asynchronous Generators
To create async generators, each arriving in its own time:
async def fetch_items():
items = ['crystal', 'amulet', 'dagger']
for item in items:
await asyncio.sleep(1)
yield item
async def main():
async for item in fetch_items():
print(f"Found {item}")
asyncio.run(main())
9. Using Semaphores
To limit the number of concurrent tasks:
async def guarded_spell(semaphore, item):
async with semaphore:
print(f"Processing {item}")
await asyncio.sleep(1)
async def main():
semaphore = asyncio.Semaphore(2) # Allow 2 concurrent tasks
await asyncio.gather(*(guarded_spell(semaphore, i) for i in range(5)))
asyncio.run(main())
10. Event Loops
To directly engage with the asynchronous loop, customizing the flow of execution:
async def perform_spell():
print("Casting spell...")
await asyncio.sleep(1)
print("Spell cast.")
loop = asyncio.get_event_loop()
try:
loop.run_until_complete(perform_spell())
finally:
loop.close()
Working With Networks, Sockets, and Network Interfaces
1. Creating a Socket
To create a socket for network communication:
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
2. Connecting to a Remote Server
To establish a link with a remote server through the socket:
s.connect(('example.com', 80)) # Connect to example.com on port 80
3. Sending Data
To dispatch data through the network to a connected entity:
s.sendall(b'Hello, server')
4. Receiving Data
To receive data from the network:
data = s.recv(1024) # Receive up to 1024 bytes
print('Received', repr(data))
5. Closing a Socket
To gracefully close the socket, severing the network link:
s.close()
6. Creating a Listening Socket
To open a socket that listens for incoming connections:
serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
serversocket.bind(('localhost', 8080)) # Bind to localhost on port 8080
serversocket.listen() # Listen for incoming connections
7. Accepting Connections
To accept and establish a network link:
clientsocket, address = serversocket.accept()
print(f"Connection from {address} has been established.")
8. Non-blocking Socket Operations
To set a socket’s mode to non-blocking:
s.setblocking(False)
9. Working with UDP Sockets
To create a socket for UDP, a protocol for quicker, but less reliable communication:
udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
udp_socket.bind(('localhost', 8081)) # Bind UDP socket to localhost on port 8081
10. Enumerating Network Interfaces
To discover the names and addresses of the machine’s network interfaces:
import socket
import netifaces
for interface in netifaces.interfaces():
addr = netifaces.ifaddresses(interface).get(netifaces.AF_INET)
if addr:
print(f"Interface: {interface}, Address: {addr[0]['addr']}")
#
Working With Pandas Library (Dataframes)
1. Creating a DataFrame
To create a DataFrame with your own columns and data:
import pandas as pd
data = {
'Element': ['Earth', 'Water', 'Fire', 'Air'],
'Symbol': ['🜃', '🜄', '🜂', '🜁']
}
df = pd.DataFrame(data)
2. Reading Data from a CSV File
To read data from a CSV file, transforming it into a DataFrame:
df = pd.read_csv('elements.csv')
3. Inspecting the First Few Rows
To get first rows from dataframe:
print(df.head())
4. Selecting Columns
To select specific columns from dataframe:
symbols = df['Symbol']
5. Filtering Rows
To sift through the DataFrame, selecting rows that meet your criteria:
fire_elements = df[df['Element'] == 'Fire']
6. Creating New Columns
To create new columns in DataFrame derived from the data within:
df['Length'] = df['Element'].apply(len)
7. Grouping and Aggregating Data
To gather your data into groups and extract new data through aggregation:
element_groups = df.groupby('Element').agg({'Length': 'mean'})
8. Merging DataFrames
To weave together two DataFrames, joining them by a shared key:
df2 = pd.DataFrame({'Element': ['Earth', 'Fire'], 'Quality': ['Solid', 'Plasma']})
merged_df = pd.merge(df, df2, on='Element')
9. Handling Missing Data
To clean your DataFrame, filling the voids where data is absent:
df.fillna(value='Unknown', inplace=True)
10. Pivoting and Reshaping Data
To transmute the shape of your DataFrame, revealing hidden patterns and structures with a pivot operation:
pivoted_df = df.pivot(index='Element', columns='Symbol', values='Length')
Working With Numpy Library (Arrays)
1. Creating a NumPy Array
To create an array:
import numpy as np
array = np.array([1, 2, 3, 4, 5])
2. Array of Zeros or Ones
To create an array filled with zeros:
zeros = np.zeros((3, 3)) # A 3x3 array of zeros
ones = np.ones((2, 4)) # A 2x4 array of ones
3. Creating a Range of Numbers
To create a sequence of numbers:
range_array = np.arange(10, 50, 5) # From 10 to 50, step by 5
4. Creating a Linearly Spaced Array
To create a series of values, evenly spaced between two bounds:
linear_spaced = np.linspace(0, 1, 5) # 5 values from 0 to 1
5. Reshaping an Array
To transmute the shape of an array, altering its dimensions:
reshaped = np.arange(9).reshape(3, 3) # Reshape a 1D array into a 3x3 2D array
6. Basic Array Operations
To perform elemental manipulations upon the arrays:
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
sum = a + b # Element-wise addition
difference = b - a # Element-wise subtraction
product = a * b # Element-wise multiplication
7. Matrix Multiplication
Basic dot product Operation:
result = np.dot(a.reshape(1, 3), b.reshape(3, 1)) # Dot product of a and b
8. Accessing Array Elements
Accessing array elements with useful syntax:
element = a[2] # Retrieve the third element of array 'a'
row = reshaped[1, :] # Retrieve the second row of 'reshaped'
9. Boolean Indexing
To filter the elements of an array through the sieve of conditionals:
filtered = a[a > 2] # Elements of 'a' greater than 2
10. Aggregations and Statistics
Statistical operations on np arrays:
mean = np.mean(a)
maximum = np.max(a)
sum = np.sum(a)
Working With Matplotlib Library (Data Visualization)
1. Creating a Basic Plot
To create a plot visualization:
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [1, 4, 9, 16, 25]
plt.plot(x, y)
plt.show()
2. Adding Titles and Labels
To create names for axes and title your plot to give better context:
plt.plot(x, y)
plt.title('Growth Over Time')
plt.xlabel('Time')
plt.ylabel('Growth')
plt.show()
3. Creating a Scatter Plot
Creating a scatter plot:
plt.scatter(x, y)
plt.show()
4. Customizing Line Styles and Markers
To add symbols into your plot, enriching its usefulness:
plt.plot(x, y, linestyle='--', marker='o', color='b')
plt.show()
5. Creating Multiple Plots on the Same Axes
Creating Multiple Plots on the Same Axes:
z = [2, 3, 4, 5, 6]
plt.plot(x, y)
plt.plot(x, z)
plt.show()
6. Creating Subplots
To create subplots:
fig, ax = plt.subplots(2, 1) # 2 rows, 1 column
ax[0].plot(x, y)
ax[1].plot(x, z)
plt.show()
7. Creating a Histogram
To create a histogram:
data = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]
plt.hist(data, bins=4)
plt.show()
8. Adding a Legend
To create a legend for the plot:
plt.plot(x, y, label='Growth')
plt.plot(x, z, label='Decay')
plt.legend()
plt.show()
9. Customizing Ticks
To create your own marks upon the axes, defining the scale of your values:
plt.plot(x, y)
plt.xticks([1, 2, 3, 4, 5], ['One', 'Two', 'Three', 'Four', 'Five'])
plt.yticks([0, 5, 10, 15, 20, 25], ['0', '5', '10', '15', '20', '25+'])
plt.show()
10. Saving Figures
To save the plot as a .png:
plt.plot(x, y)
plt.savefig('growth_over_time.png')
Working With Scikit-Learn Library (Machine Learning)
1. Loading a Dataset
To work with datasets for your ML experiments
from sklearn import datasets
iris = datasets.load_iris()
X, y = iris.data, iris.target
2. Splitting Data into Training and Test Sets
To divide your data, dedicating portions to training and evaluation:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
3. Training a Model
Training a ML Model using RandomForestClassifier:
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
model.fit(X_train, y_train)
4. Making Predictions
To access the model predictions:
predictions = model.predict(X_test)
5. Evaluating Model Performance
To evaluate your model, measuring its accuracy in prediction:
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_test, predictions)
print(f"Model accuracy: {accuracy}")
6. Using Cross-Validation
To use Cross-Validation:
from sklearn.model_selection import cross_val_score
scores = cross_val_score(model, X, y, cv=5)
print(f"Cross-validation scores: {scores}")
7. Feature Scaling
To create the appropriate scales of your features, allowing the model to learn more effectively:
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
8. Parameter Tuning with Grid Search
To refine your model’s parameters, seeking the optimal combination:
from sklearn.model_selection import GridSearchCV
param_grid = {'n_estimators': [10, 50, 100], 'max_depth': [None, 10, 20]}
grid_search = GridSearchCV(model, param_grid, cv=5)
grid_search.fit(X_train, y_train)
9. Pipeline Creation
To streamline your data processing and modeling steps, crafting a seamless flow:
from sklearn.pipeline import Pipeline
pipeline = Pipeline([
('scaler', StandardScaler()),
('classifier', RandomForestClassifier())
])
pipeline.fit(X_train, y_train)
10. Saving and Loading a Model
To preserve your model:
import joblib
# Saving the model
joblib.dump(model, 'model.joblib')
# Loading the model
loaded_model = joblib.load('model.joblib')
Working With Plotly Library (Interactive Data Visualization)
1. Creating a Basic Line Chart
To create a line chart:
import plotly.graph_objs as go
import plotly.io as pio
x = [1, 2, 3, 4, 5]
y = [1, 4, 9, 16, 25]
fig = go.Figure(data=go.Scatter(x=x, y=y, mode='lines'))
pio.show(fig)
2. Creating a Scatter Plot
To create a scatter plot:
fig = go.Figure(data=go.Scatter(x=x, y=y, mode='markers'))
pio.show(fig)
3. Creating a Bar Chart
To Create a Bar Chart:
categories = ['A', 'B', 'C', 'D', 'E']
values = [10, 20, 15, 30, 25]
fig = go.Figure(data=go.Bar(x=categories, y=values))
pio.show(fig)
4. Creating a Pie Chart
To create a Pie Chart:
labels = ['Earth', 'Water', 'Fire', 'Air']
sizes = [25, 35, 20, 20]
fig = go.Figure(data=go.Pie(labels=labels, values=sizes))
pio.show(fig)
5. Creating a Histogram
To create a Histogram:
data = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]
fig = go.Figure(data=go.Histogram(x=data))
pio.show(fig)
6. Creating Box Plots
To create a Box Plot:
data = [1, 2, 2, 3, 4, 4, 4, 5, 5, 6]
fig = go.Figure(data=go.Box(y=data))
pio.show(fig)
7. Creating Heatmaps
To create a heatmap:
import numpy as np
z = np.random.rand(10, 10) # Generate random data
fig = go.Figure(data=go.Heatmap(z=z))
pio.show(fig)
8. Creating 3D Surface Plots
To create a 3D Surface Plot:
z = np.random.rand(20, 20) # Generate random data
fig = go.Figure(data=go.Surface(z=z))
pio.show(fig)
9. Creating Subplots
To create a subplot:
from plotly.subplots import make_subplots
fig = make_subplots(rows=1, cols=2)
fig.add_trace(go.Scatter(x=x, y=y, mode='lines'), row=1, col=1)
fig.add_trace(go.Bar(x=categories, y=values), row=1, col=2)
pio.show(fig)
10. Creating Interactive Time Series
To work with Time Series:
import pandas as pd
dates = pd.date_range('20230101', periods=5)
values = [10, 11, 12, 13, 14]
fig = go.Figure(data=go.Scatter(x=dates, y=values, mode='lines+markers'))
pio.show(fig)
Working With Dates and Times
1. Getting the Current Date and Time
To get the current data and time:
from datetime import datetime
now = datetime.now()
print(f"Current date and time: {now}")
2. Creating Specific Date and Time
To conjure a moment from the past or future, crafting it with precision:
specific_time = datetime(2023, 1, 1, 12, 30)
print(f"Specific date and time: {specific_time}")
3. Formatting Dates and Times
Formatting Dates and Times:
formatted = now.strftime("%Y-%m-%d %H:%M:%S")
print(f"Formatted date and time: {formatted}")
4. Parsing Dates and Times from Strings
Parsing Dates and Times from Strings:
date_string = "2023-01-01 15:00:00"
parsed_date = datetime.strptime(date_string, "%Y-%m-%d %H:%M:%S")
print(f"Parsed date and time: {parsed_date}")
5. Working with Time Deltas
To traverse the distances between moments, leaping forward or backward through time:
from datetime import timedelta
delta = timedelta(days=7)
future_date = now + delta
print(f"Date after 7 days: {future_date}")
6. Comparing Dates and Times
Date and Times comparisons:
if specific_time > now:
print("Specific time is in the future.")
else:
print("Specific time has passed.")
7. Extracting Components from a Date/Time
To extract dates year, month, day, and more:
year = now.year
month = now.month
day = now.day
hour = now.hour
minute = now.minute
second = now.second
print(f"Year: {year}, Month: {month}, Day: {day}, Hour: {hour}, Minute: {minute}, Second: {second}")
8. Working with Time Zones
To work with time zones honoring the local time:
from datetime import timezone, timedelta
utc_time = datetime.now(timezone.utc)
print(f"Current UTC time: {utc_time}")
# Adjusting to a specific timezone (e.g., EST)
est_time = utc_time - timedelta(hours=5)
print(f"Current EST time: {est_time}")
9. Getting the Weekday
To identify the day of the week:
weekday = now.strftime("%A")
print(f"Today is: {weekday}")
10. Working with Unix Timestamps
To converse with the ancient epochs, translating their count from the dawn of Unix:
timestamp = datetime.timestamp(now)
print(f"Current timestamp: {timestamp}")
# Converting a timestamp back to a datetime
date_from_timestamp = datetime.fromtimestamp(timestamp)
print(f"Date from timestamp: {date_from_timestamp}")
Working With More Advanced List Comprehensions and Lambda Functions
1. Nested List Comprehensions
To work with nested list Comprehensions:
matrix = [[j for j in range(5)] for i in range(3)]
print(matrix) # Creates a 3x5 matrix
2. Conditional List Comprehensions
To filter elements that meet your criteria:
filtered = [x for x in range(10) if x % 2 == 0]
print(filtered) # Even numbers from 0 to 9
3. List Comprehensions with Multiple Iterables
To merge and transform elements from multiple sources in a single dance:
pairs = [(x, y) for x in [1, 2, 3] for y in [3, 1, 4] if x != y]
print(pairs) # Pairs of non-equal elements
4. Using Lambda Functions
To summon anonymous functions, ephemeral and concise, for a single act of magic:
square = lambda x: x**2
print(square(5)) # Returns 25
5. Lambda Functions in List Comprehensions
To employ lambda functions within your list comprehensions:
squared = [(lambda x: x**2)(x) for x in range(5)]
print(squared) # Squares of numbers from 0 to 4
6. List Comprehensions for Flattening Lists
To flatten a nested list, spreading its elements into a single dimension:
nested = [[1, 2, 3], [4, 5], [6, 7]]
flattened = [x for sublist in nested for x in sublist]
print(flattened)
7. Applying Functions to Elements
To apply a transformation function to each element:
import math
transformed = [math.sqrt(x) for x in range(1, 6)]
print(transformed) # Square roots of numbers from 1 to 5
8. Using Lambda with Map and Filter
To map and filter lists:
mapped = list(map(lambda x: x**2, range(5)))
filtered = list(filter(lambda x: x > 5, mapped))
print(mapped) # Squares of numbers from 0 to 4
print(filtered) # Elements greater than 5
9. List Comprehensions with Conditional Expressions
List Comprehensions with Condidtional Expressions:
conditional = [x if x > 2 else x**2 for x in range(5)]
print(conditional) # Squares numbers less than or equal to 2, passes others unchanged
10. Complex Transformations with Lambda
To conduct intricate transformations, using lambda functions:
complex_transformation = list(map(lambda x: x**2 if x % 2 == 0 else x + 5, range(5)))
print(complex_transformation) # Applies different transformations based on even-odd condition
Working With Object Oriented Programming
1. Defining a Class
Creating a class:
class Wizard:
def __init__(self, name, power):
self.name = name
self.power = power
def cast_spell(self):
print(f"{self.name} casts a spell with power {self.power}!")
2. Creating an Instance
To create an instance of your class:
merlin = Wizard("Merlin", 100)
3. Invoking Methods
To call methods on instance of class:
merlin.cast_spell()
4. Inheritance
Subclassing:
class ArchWizard(Wizard):
def __init__(self, name, power, realm):
super().__init__(name, power)
self.realm = realm
def summon_familiar(self):
print(f"{self.name} summons a familiar from the {self.realm} realm.")
5. Overriding Methods
To overide base classes:
class Sorcerer(Wizard):
def cast_spell(self):
print(f"{self.name} casts a powerful dark spell!")
6. Polymorphism
To interact with different forms through a common interface:
def unleash_magic(wizard):
wizard.cast_spell()
unleash_magic(merlin)
unleash_magic(Sorcerer("Voldemort", 90))
7. Encapsulation
To use information hiding:
class Alchemist:
def __init__(self, secret_ingredient):
self.__secret = secret_ingredient
def reveal_secret(self):
print(f"The secret ingredient is {self.__secret}")
8. Composition
To assemble Objects from simpler ones:
class Spellbook:
def __init__(self, spells):
self.spells = spells
class Mage:
def __init__(self, name, spellbook):
self.name = name
self.spellbook = spellbook
9. Class Methods and Static Methods
To bind actions to the class itself or liberate them from the instance, serving broader purposes:
class Enchanter:
@staticmethod
def enchant(item):
print(f"{item} is enchanted!")
@classmethod
def summon(cls):
print("A new enchanter is summoned.")
10. Properties and Setters
To elegantly manage access to an entity’s attributes, guiding their use and protection:
class Elementalist:
def __init__(self, element):
self._element = element
@property
def element(self):
return self._element
@element.setter
def element(self, value):
if value in ["Fire", "Water", "Earth", "Air"]:
self._element = value
else:
print("Invalid element!")
Working With Decorators
1. Basic Decorator
To create a simple decorator that wraps a function:
def my_decorator(func):
def wrapper():
print("Something is happening before the function is called.")
func()
print("Something is happening after the function is called.")
return wrapper
@my_decorator
def say_hello():
print("Hello!")
say_hello()
2. Decorator with Arguments
To pass arguments to the function within a decorator:
def my_decorator(func):
def wrapper(*args, **kwargs):
print("Before call")
result = func(*args, **kwargs)
print("After call")
return result
return wrapper
@my_decorator
def greet(name):
print(f"Hello {name}")
greet("Alice")
3. Using functools.wraps
To preserve the metadata of the original function when decorating:
from functools import wraps
def my_decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
"""Wrapper function"""
return func(*args, **kwargs)
return wrapper
@my_decorator
def greet(name):
"""Greet someone"""
print(f"Hello {name}")
print(greet.__name__) # Outputs: 'greet'
print(greet.__doc__) # Outputs: 'Greet someone'
4. Class Decorator
To create a decorator using a class:
class MyDecorator:
def __init__(self, func):
self.func = func
def __call__(self, *args, **kwargs):
print("Before call")
self.func(*args, **kwargs)
print("After call")
@MyDecorator
def greet(name):
print(f"Hello {name}")
greet("Alice")
5. Decorator with Arguments
To create a decorator that accepts its own arguments:
def repeat(times):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
for _ in range(times):
func(*args, **kwargs)
return wrapper
return decorator
@repeat(3)
def say_hello():
print("Hello")
say_hello()
6. Method Decorator
To apply a decorator to a method within a class:
def method_decorator(func):
@wraps(func)
def wrapper(self, *args, **kwargs):
print("Method Decorator")
return func(self, *args, **kwargs)
return wrapper
class MyClass:
@method_decorator
def greet(self, name):
print(f"Hello {name}")
obj = MyClass()
obj.greet("Alice")
7. Stacking Decorators
To apply multiple decorators to a single function:
@my_decorator
@repeat(2)
def greet(name):
print(f"Hello {name}")
greet("Alice")
8. Decorator with Optional Arguments
Creating a decorator that works with or without arguments:
def smart_decorator(arg=None):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
if arg:
print(f"Argument: {arg}")
return func(*args, **kwargs)
return wrapper
if callable(arg):
return decorator(arg)
return decorator
@smart_decorator
def no_args():
print("No args")
@smart_decorator("With args")
def with_args():
print("With args")
no_args()
with_args()
9. Class Method Decorator
To decorate a class method:
class MyClass:
@classmethod
@my_decorator
def class_method(cls):
print("Class method called")
MyClass.class_method()
10. Decorator for Static Method
To decorate a static method:
class MyClass:
@staticmethod
@my_decorator
def static_method():
print("Static method called")
MyClass.static_method()
Working With GraphQL
1. Setting Up a GraphQL Client
To work with GraphQL:
from gql import gql, Client
from gql.transport.requests import RequestsHTTPTransport
transport = RequestsHTTPTransport(url='https://your-graphql-endpoint.com/graphql')
client = Client(transport=transport, fetch_schema_from_transport=True)
2. Executing a Simple Query
Executing a Query:
query = gql('''
{
allWizards {
id
name
power
}
}
''')
result = client.execute(query)
print(result)
3. Executing a Query with Variables
Query with Variables:
query = gql('''
query GetWizards($element: String!) {
wizards(element: $element) {
id
name
}
}
''')
params = {"element": "Fire"}
result = client.execute(query, variable_values=params)
print(result)
4. Mutations
To create and execute a mutation:
mutation = gql('''
mutation CreateWizard($name: String!, $element: String!) {
createWizard(name: $name, element: $element) {
wizard {
id
name
}
}
}
''')
params = {"name": "Gandalf", "element": "Light"}
result = client.execute(mutation, variable_values=params)
print(result)
5. Handling Errors
Error handling:
from gql import gql, Client
from gql.transport.exceptions import TransportQueryError
try:
result = client.execute(query)
except TransportQueryError as e:
print(f"GraphQL Query Error: {e}")
6. Subscriptions
Working with Subscriptions:
subscription = gql('''
subscription {
wizardUpdated {
id
name
power
}
}
''')
for result in client.subscribe(subscription):
print(result)
7. Fragments
Working with Fragments:
query = gql('''
fragment WizardDetails on Wizard {
name
power
}
query {
allWizards {
...WizardDetails
}
}
''')
result = client.execute(query)
print(result)
8. Inline Fragments
To tailor the response based on the type of the object returned:
query = gql('''
{
search(text: "magic") {
__typename
... on Wizard {
name
power
}
... on Spell {
name
effect
}
}
}
''')
result = client.execute(query)
print(result)
9. Using Directives
To dynamically include or skip fields in your queries based on conditions:
query = gql('''
query GetWizards($withPower: Boolean!) {
allWizards {
name
power @include(if: $withPower)
}
}
''')
params = {"withPower": True}
result = client.execute(query, variable_values=params)
print(result)
10. Batching Requests
To combine multiple operations into a single request, reducing network overhead:
from gql import gql, Client
from gql.transport.requests import RequestsHTTPTransport
transport = RequestsHTTPTransport(url='https://your-graphql-endpoint.com/graphql', use_json=True)
client = Client(transport=transport, fetch_schema_from_transport=True)
query1 = gql('query { wizard(id: "1") { name } }')
query2 = gql('query { allSpells { name } }')
results = client.execute([query1, query2])
print(results)
Working With Regular Expressions
1. Basic Pattern Matching
To find a match for a pattern within a string:
import re
text = "Search this string for patterns."
match = re.search(r"patterns", text)
if match:
print("Pattern found!")
2. Compiling Regular Expressions
To compile a regular expression for repeated use:
pattern = re.compile(r"patterns")
match = pattern.search(text)
3. Matching at the Beginning or End
To check if a string starts or ends with a pattern:
if re.match(r"^Search", text):
print("Starts with 'Search'")
if re.search(r"patterns.$", text):
print("Ends with 'patterns.'")
4. Finding All Matches
To find all occurrences of a pattern in a string:
all_matches = re.findall(r"t\w+", text) # Finds words starting with 't'
print(all_matches)
5. Search and Replace (Substitution)
To replace occurrences of a pattern within a string:
replaced_text = re.sub(r"string", "sentence", text)
print(replaced_text)
6. Splitting a String
To split a string by occurrences of a pattern:
words = re.split(r"\s+", text) # Split on one or more spaces
print(words)
7. Escaping Special Characters
To match special characters literally, escape them:
escaped = re.search(r"\bfor\b", text) # \b is a word boundary
8. Grouping and Capturing
To group parts of a pattern and extract their values:
match = re.search(r"(\w+) (\w+)", text)
if match:
print(match.group()) # The whole match
print(match.group(1)) # The first group
9. Non-Capturing Groups
To define groups without capturing them:
match = re.search(r"(?:\w+) (\w+)", text)
if match:
print(match.group(1)) # The first (and only) group
10. Lookahead and Lookbehind Assertions
To match a pattern based on what comes before or after it without including it in the result:
lookahead = re.search(r"\b\w+(?= string)", text) # Word before ' string'
lookbehind = re.search(r"(?<=Search )\w+", text) # Word after 'Search '
if lookahead:
print(lookahead.group())
if lookbehind:
print(lookbehind.group())
11. Flags to Modify Pattern Matching Behavior
To use flags like re.IGNORECASE
to change how patterns are matched:
case_insensitive = re.findall(r"search", text, re.IGNORECASE)
print(case_insensitive)
12. Using Named Groups
To assign names to groups and reference them by name:
match = re.search(r"(?P<first>\w+) (?P<second>\w+)", text)
if match:
print(match.group('first'))
print(match.group('second'))
13. Matching Across Multiple Lines
To match patterns over multiple lines using the re.MULTILINE
flag:
multi_line_text = "Start\nmiddle end"
matches = re.findall(r"^m\w+", multi_line_text, re.MULTILINE)
print(matches)
14. Lazy Quantifiers
To match as few characters as possible using lazy quantifiers (*?
, +?
, ??
):
html = "<body><h1>Title</h1></body>"
match = re.search(r"<.*?>", html)
if match:
print(match.group()) # Matches '<body>'
15. Verbose Regular Expressions
To use re.VERBOSE
for more readable regular expressions:
pattern = re.compile(r"""
\b # Word boundary
\w+ # One or more word characters
\s # Space
""", re.VERBOSE)
match = pattern.search(text)
Working With Strings
1. Concatenating Strings
To join strings together:
greeting = "Hello"
name = "Alice"
message = greeting + ", " + name + "!"
print(message)
2. String Formatting with str.format
To insert values into a string template:
message = "{}, {}. Welcome!".format(greeting, name)
print(message)
3. Formatted String Literals (f-strings)
To embed expressions inside string literals (Python 3.6+):
message = f"{greeting}, {name}. Welcome!"
print(message)
4. String Methods — Case Conversion
To change the case of a string:
s = "Python"
print(s.upper()) # Uppercase
print(s.lower()) # Lowercase
print(s.title()) # Title Case
5. String Methods — strip
, rstrip
, lstrip
To remove whitespace or specific characters from the ends of a string:
s = " trim me "
print(s.strip()) # Both ends
print(s.rstrip()) # Right end
print(s.lstrip()) # Left end
6. String Methods — startswith
, endswith
To check the start or end of a string for specific text:
s = "filename.txt"
print(s.startswith("file")) # True
print(s.endswith(".txt")) # True
7. String Methods — split
, join
To split a string into a list or join a list into a string:
s = "split,this,string"
words = s.split(",") # Split string into list
joined = " ".join(words) # Join list into string
print(words)
print(joined)
8. String Methods — replace
To replace parts of a string with another string:
s = "Hello world"
new_s = s.replace("world", "Python")
print(new_s)
9. String Methods — find
, index
To find the position of a substring within a string:
s = "look for a substring"
position = s.find("substring") # Returns -1 if not found
index = s.index("substring") # Raises ValueError if not found
print(position)
print(index)
10. String Methods — Working with Characters
To process individual characters in a string:
s = "characters"
for char in s:
print(char) # Prints each character on a new line
11. String Methods — isdigit
, isalpha
, isalnum
To check if a string contains only digits, alphabetic characters, or alphanumeric characters:
print("123".isdigit()) # True
print("abc".isalpha()) # True
print("abc123".isalnum())# True
12. String Slicing
To extract a substring using slicing:
s = "slice me"
sub = s[2:7] # From 3rd to 7th character
print(sub)
13. String Length with len
To get the length of a string:
s = "length"
print(len(s)) # 6
14. Multiline Strings
To work with strings spanning multiple lines:
multi = """Line one
Line two
Line three"""
print(multi)
15. Raw Strings
To treat backslashes as literal characters, useful for regex patterns and file paths:
path = r"C:\User\name\folder"
print(path)
Working With Web Scraping
1. Fetching Web Pages with requests
To retrieve the content of a web page:
import requests
url = 'https://example.com'
response = requests.get(url)
html = response.text
2. Parsing HTML with BeautifulSoup
To parse HTML and extract data:
from bs4 import BeautifulSoup
soup = BeautifulSoup(html, 'html.parser')
print(soup.prettify()) # Pretty-print the HTML
3. Navigating the HTML Tree
To find elements using tags:
title = soup.title.text # Get the page title
headings = soup.find_all('h1') # List of all <h1> tags
4. Using CSS Selectors
To select elements using CSS selectors:
articles = soup.select('div.article') # All elements with class 'article' inside a <div>
5. Extracting Data from Tags
To extract text and attributes from HTML elements:
for article in articles:
title = article.h2.text # Text inside the <h2> tag
link = article.a['href'] # 'href' attribute of the <a> tag
print(title, link)
6. Handling Relative URLs
To convert relative URLs to absolute URLs:
from urllib.parse import urljoin
absolute_urls = [urljoin(url, link) for link in relative_urls]
7. Dealing with Pagination
To scrape content across multiple pages:
base_url = "https://example.com/page/"
for page in range(1, 6): # For 5 pages
page_url = base_url + str(page)
response = requests.get(page_url)
# Process each page's content
8. Handling AJAX Requests
To scrape data loaded by AJAX requests:
# Find the URL of the AJAX request (using browser's developer tools) and fetch it
ajax_url = 'https://example.com/ajax_endpoint'
data = requests.get(ajax_url).json() # Assuming the response is JSON
9. Using Regular Expressions in Web Scraping
To extract data using regular expressions:
import re
emails = re.findall(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', html)
10. Respecting robots.txt
To check robots.txt
for scraping permissions:
from urllib.robotparser import RobotFileParser
rp = RobotFileParser()
rp.set_url('https://example.com/robots.txt')
rp.read()
can_scrape = rp.can_fetch('*', url)
11. Using Sessions and Cookies
To maintain sessions and handle cookies:
session = requests.Session()
session.get('https://example.com/login')
session.cookies.set('key', 'value') # Set cookies, if needed
response = session.get('https://example.com/protected_page')
12. Scraping with Browser Automation (selenium
Library)
To scrape dynamic content rendered by JavaScript:
from selenium import webdriver
browser = webdriver.Chrome()
browser.get('https://example.com')
content = browser.page_source
# Parse and extract data using BeautifulSoup, etc.
browser.quit()
13. Error Handling in Web Scraping
To handle errors and exceptions:
try:
response = requests.get(url, timeout=5)
response.raise_for_status() # Raises an error for bad status codes
except requests.exceptions.RequestException as e:
print(f"Error: {e}")
14. Asynchronous Web Scraping
To scrape websites asynchronously for faster data retrieval:
import aiohttp
import asyncio
async def fetch(url):
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
return await response.text()
urls = ['https://example.com/page1', 'https://example.com/page2']
loop = asyncio.get_event_loop()
pages = loop.run_until_complete(asyncio.gather(*(fetch(url) for url in urls)))
15. Data Storage (CSV, Database)
To store scraped data in a CSV file or a database:
import csv
with open('output.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['Title', 'URL'])
for article in articles:
writer.writerow([article['title'], article['url']])
Working With pip
(Package Management)
1. Installing a Package
To summon a library from the vast repositories, incorporating its power into your environment:
pip install numpy
2. Listing Installed Packages
To survey the compendium of libraries that reside within your realm, noting their versions and lineage:
pip list
3. Upgrading a Package
To imbue an installed library with enhanced powers and capabilities, elevating it to its latest form:
pip install --upgrade numpy
4. Uninstalling a Package
To uninstall a package:
pip uninstall numpy
5. Searching for Packages
Searching packages:
pip search "data visualization"
6. Installing Specific Versions of a Package
To install a specific version:
pip install numpy==1.18.5
7. Generating a Requirements File
Requirements file:
pip freeze > requirements.txt
8. Installing Packages from a Requirements File
To conjure a symphony of libraries in unison, each aligned with the notations in your tome of requirements:
pip install -r requirements.txt
9. Using Virtual Environments
Create virtual Environments to manage package conflicts:
# Create a virtual environment named 'venv'
python -m venv venv
# Activate the virtual environment
# On Windows
.\venv\Scripts\activate
# On Unix or MacOS
source venv/bin/activate
10. Checking Package Dependencies
Understanding Dependencies:
pip show numpy
Working With Common Built-in Functions and Packages
1. os
- Operating System Interface
To interact with the operating system:
import os
current_directory = os.getcwd() # Get the current working directory
2. sys
- System-specific Parameters and Functions
To access system-specific parameters and functions:
import sys
sys.exit() # Exit the script
3. datetime
- Basic Date and Time Types
To work with dates and times:
from datetime import datetime
now = datetime.now() # Current date and time
4. math
- Mathematical Functions
To perform mathematical operations:
import math
result = math.sqrt(16) # Square root
5. random
- Generate Pseudo-random Numbers
To generate pseudo-random numbers:
import random
number = random.randint(1, 10) # Random integer between 1 and 10
6. json
- JSON Encoder and Decoder
To parse and generate JSON data:
import json
json_string = json.dumps({'name': 'Alice', 'age': 30}) # Dictionary to JSON string
7. re
- Regular Expressions
To work with regular expressions:
import re
match = re.search('Hello', 'Hello, world!') # Search for 'Hello' in the string
8. urllib
- URL Handling Modules
To work with URLs:
from urllib.request import urlopen
content = urlopen('http://example.com').read() # Fetch the content of a webpage
9. http
- HTTP Modules
To create HTTP servers and work with HTTP requests:
from http.server import HTTPServer, BaseHTTPRequestHandler
class SimpleHTTPRequestHandler(BaseHTTPRequestHandler): def do_GET(self):
self.send_response(200)
self.send_header('Content-type', 'text/html')
self.end_headers()
self.wfile.write(b'<html><head><title>Python HTTP Server</title></head>')
self.wfile.write(b'<body><h1>Hello from a simple Python HTTP server!</h1></body></html>')def run(server_class=HTTPServer, handler_class=SimpleHTTPRequestHandler):
server_address = ('', 8000) # Serve on all addresses, port 8000
httpd = server_class(server_address, handler_class)
print("Server starting on port 8000...")
httpd.serve_forever()if __name__ == '__main__':
run()
10. subprocess
- Subprocess Management
To spawn new processes and connect to their input/output/error pipes:
import subprocess
subprocess.run(['ls', '-l']) # Run the 'ls -l' command
11. socket
- Low-level Networking Interface
To create network clients and servers:
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Create a TCP/IP socket
12. threading
- Thread-based Parallelism
To manage concurrent execution of code:
import threading
def worker():
print("Worker thread executing")
thread = threading.Thread(target=worker)
thread.start()
13. multiprocessing
- Process-based Parallelism
To manage concurrent processes:
from multiprocessing import Process
def worker():
print("Worker process")
p = Process(target=worker)
p.start()
14. argparse
- Parser for Command-line Options, Arguments, and Sub-commands
To parse command-line arguments:
import argparse
parser = argparse.ArgumentParser(description="Process some integers.")
args = parser.parse_args()
15. logging
- Logging Facility
To log messages (debug, info, warning, error, and critical):
import logging
logging.warning('This is a warning message')
16. unittest
- Unit Testing Framework
To create and run unit tests:
import unittest
class TestStringMethods(unittest.TestCase):
def test_upper(self):
self.assertEqual('foo'.upper(), 'FOO')
17. pathlib
- Object-oriented Filesystem Paths
To work with filesystem paths in an object-oriented way:
from pathlib import Path
p = Path('.')
18. functools
- Higher-order Functions and Operations on Callable Objects
To use higher-order functions and operations on callable objects:
from functools import lru_cache
@lru_cache(maxsize=None)
def fib(n):
if n < 2:
return n
return fib(n-1) + fib(n-2)
19. collections
- Container Data Types
To use specialized container data types (deque, Counter, OrderedDict, etc.):
from collections import Counter
c = Counter('hello world')
20. itertools
- Functions Creating Iterators for Efficient Looping
To construct and use iterators for efficient looping:
import itertools
for combination in itertools.combinations('ABCD', 2):
print(combination)
21. hashlib
- Secure Hash and Message Digest Algorithms
To hash data:
import hashlib
hash_object = hashlib.sha256(b'Hello World')
hex_dig = hash_object.hexdigest()
22. csv
- CSV File Reading and Writing
To read from and write to CSV files:
import csv
with open('file.csv', mode='r') as infile:
reader = csv.reader(infile)
23. xml.etree.ElementTree
- The ElementTree XML API
To parse and create XML data:
import xml.etree.ElementTree as ET
tree = ET.parse('file.xml')
root = tree.getroot()
24. sqlite3
- DB-API 2.0 Interface for SQLite Databases
To interact with SQLite databases:
import sqlite3
conn = sqlite3.connect('example.db')
25. tkinter
- GUI Toolkit
To create GUI applications:
import tkinter as tk
root = tk.Tk()
26. pickle
- Python Object Serialization
To serialize and deserialize Python object structures:
import pickle
serialized_obj = pickle.dumps(obj)
27. io
- Core Tools for Working with Streams
To handle streams (file-like objects):
from io import StringIO
f = StringIO("some initial text data")
28. time
- Time Access and Conversions
To access time-related functions:
import time
time.sleep(1) # Sleep for 1 second
29. calendar
- General Calendar-related Functions
To work with calendars:
import calendar
print(calendar.month(2023, 1)) # Print the calendar for January 2023
30. queue
- A Synchronized Queue Class
To manage a queue, useful in multithreaded programming:
from queue import Queue
q = Queue()
31. shutil
- High-level File Operations
To perform high-level file operations, like copying and archiving:
import shutil
shutil.copyfile('source.txt', 'dest.txt')
32. glob
- Unix Style Pathname Pattern Expansion
To find files matching a specified pattern:
import glob
for file in glob.glob("*.txt"):
print(file)
33. tempfile
- Generate Temporary Files and Directories
To create temporary files and directories:
import tempfile
temp = tempfile.TemporaryFile()
34. bz2
- Support for Bzip2 Compression
To compress and decompress data using bzip2 compression:
import bz2
compressed = bz2.compress(b'your data here')
35. gzip
- Support for Gzip Compression
To compress and decompress data using gzip compression:
import gzip
with gzip.open('file.txt.gz', 'wt') as f:
f.write('your data here')
36. ssl
- TLS/SSL Wrapper for Socket Objects
To handle TLS/SSL encryption and peer authentication for network sockets:
import ssl
ssl.wrap_socket(sock)
37. imaplib
- IMAP4 Protocol Client
To access and manipulate mail over IMAP4:
import imaplib
mail = imaplib.IMAP4_SSL('imap.example.com')
38. smtplib
- SMTP Protocol Client
To send mail using the Simple Mail Transfer Protocol (SMTP):
import smtplib
server = smtplib.SMTP('smtp.example.com', 587)
39. email
- Managing Email Messages
To manage email messages, including MIME and other RFC 2822-based message documents:
from email.message import EmailMessage
msg = EmailMessage()
40. base64
- Base16, Base32, Base64, Base85 Data Encodings
To encode and decode data using Base64:
import base64
encoded_data = base64.b64encode(b'data to encode')
41. difflib
- Helpers for Computing Deltas
To compare sequences and produce human-readable diffs:
import difflib
diff = difflib.ndiff('one\ntwo\nthree\n'.splitlines(keepends=True),
'ore\ntree\nemu\n'.splitlines(keepends=True))
print(''.join(diff))
42. gettext
- Multilingual Internationalization Services
To internationalize your Python programs:
import gettext
gettext.install('myapp')
43. locale
- Internationalization Services
To access a database of culture-specific data formats:
import locale
locale.setlocale(locale.LC_ALL, '')
44. secrets
- Generate Secure Random Numbers for Managing Secrets
To generate secure random numbers for managing secrets, such as tokens or passwords:
import secrets
secure_token = secrets.token_hex(16)
45. uuid
- UUID Objects According to RFC 4122
To generate universally unique identifiers (UUIDs):
import uuid
unique_id = uuid.uuid4()
46. html
- HyperText Markup Language Support
To handle and manipulate HTML entities:
import html
escaped = html.escape('<a href="https://example.com">link</a>')
47. ftplib
- FTP Protocol Client
To interact with and transfer files over the FTP protocol:
from ftplib import FTP
ftp = FTP('ftp.example.com')
48. tarfile
- Read and Write Tar Archive Files
To work with tar archive files, allowing you to archive and compress/decompress:
import tarfile
with tarfile.open('sample.tar.gz', 'w:gz') as tar:
tar.add('sample.txt')
Well, that’s all I have for now. I hope this list helps you get up to speed fast. If you like it, please share or give it a like (it helps a lot!).
Additionally, if you’d like a more in-depth and comprehensive guide to Python Development, there are two books on Amazon that I have found to be the best resources on Python out there for practical python development that I highly recommend. These books are:
Comments