Saturday, February 17, 2024

Ultimate Python Cheat Sheet: Practical Python For Everyday Tasks

 This Cheat Sheet was born out of necessity. Recently, I was tasked with diving into a new Python project after some time away from the language.

I’ve always appreciated Python’s practical syntax and form. However, being in Node/Typescript land for some time, I found myself in need of a rapid refresher on Python’s latest features, best practices, and most impactful tools. I needed to get back up to speed quickly without getting bogged down in the minutiae so I compiled this list so that I could reference the tasks and features I needed to use the most often. Essentially, to grasp the essential 20% of Python that addresses 80% of the programming needs I would encounter.

This guide is the culmination of that journey, offering a collection of the most practical Python knowledge, insights, and useful libraries that I encountered along the way. It’s designed to share my learning that I found most valuable, presented in a way that’s immediately applicable to your projects and challenges.

I’ve broken up the sections into logical areas that typically work together so that you can jump to an area you are interested in and find the most related items to that particular task or subject. This will include file operations, API interactions, spreadsheet manipulation, mathematical computations, and working with data structures like lists and dictionaries. Additionally, I’ll highlight some useful libraries to enhance your Python toolkit that are prevalent in the domains Python is typically used.

If you think I missed anything that should be included in the Cheat Sheet, please let me know in the comments and I’ll update the list!

Working With Files

1. Reading a File

To read the entire content of a file:

with open('example.txt', 'r') as file:
content = file.read()
print(content)

2. Writing to a File

To write text to a file, overwriting existing content:

with open('example.txt', 'w') as file:
file.write('Hello, Python!')

3. Appending to a File

To add text to the end of an existing file:

with open('example.txt', 'a') as file:
file.write('\nAppend this line.')

4. Reading Lines into a List

To read a file line by line into a list:

with open('example.txt', 'r') as file:
lines = file.readlines()
print(lines)

5. Iterating Over Each Line in a File

To process each line in a file:

with open('example.txt', 'r') as file:
for line in file:
print(line.strip())

6. Checking If a File Exists

To check if a file exists before performing file operations:

import os
if os.path.exists('example.txt'):
print('File exists.')
else:
print('File does not exist.')

7. Writing Lists to a File

To write each element of a list to a new line in a file:

lines = ['First line', 'Second line', 'Third line']
with open('example.txt', 'w') as file:
for line in lines:
file.write(f'{line}\n')

8. Using With Blocks for Multiple Files

To work with multiple files simultaneously using with blocks:

with open('source.txt', 'r') as source, open('destination.txt', 'w') as destination:
content = source.read()
destination.write(content)

9. Deleting a File

To safely delete a file if it exists:

import os
if os.path.exists('example.txt'):
os.remove('example.txt')
print('File deleted.')
else:
print('File does not exist.')

10. Reading and Writing Binary Files

To read from and write to a file in binary mode (useful for images, videos, etc.):

# Reading a binary file
with open('image.jpg', 'rb') as file:
content = file.read()
# Writing to a binary file
with open('copy.jpg', 'wb') as file:
file.write(content)

Working With Simple HTTP APIs

1. Basic GET Request

To fetch data from an API endpoint using a GET request:

import requests
response = requests.get('https://api.example.com/data')
data = response.json() # Assuming the response is JSON
print(data)

2. GET Request with Query Parameters

To send a GET request with query parameters:

import requests
params = {'key1': 'value1', 'key2': 'value2'}
response = requests.get('https://api.example.com/search', params=params)
data = response.json()
print(data)

3. Handling HTTP Errors

To handle possible HTTP errors gracefully:

import requests
response = requests.get('https://api.example.com/data')
try:
response.raise_for_status() # Raises an HTTPError if the status is 4xx, 5xx
data = response.json()
print(data)
except requests.exceptions.HTTPError as err:
print(f'HTTP Error: {err}')

4. Setting Timeout for Requests

To set a timeout for API requests to avoid hanging indefinitely:

import requests
try:
response = requests.get('https://api.example.com/data', timeout=5) # Timeout in seconds
data = response.json()
print(data)
except requests.exceptions.Timeout:
print('The request timed out')

5. Using Headers in Requests

To include headers in your request (e.g., for authorization):

import requests
headers = {'Authorization': 'Bearer YOUR_ACCESS_TOKEN'}
response = requests.get('https://api.example.com/protected', headers=headers)
data = response.json()
print(data)

6. POST Request with JSON Payload

To send data to an API endpoint using a POST request with a JSON payload:

import requests
payload = {'key1': 'value1', 'key2': 'value2'}
headers = {'Content-Type': 'application/json'}
response = requests.post('https://api.example.com/submit', json=payload, headers=headers)
print(response.json())

7. Handling Response Encoding

To handle the response encoding properly:

import requests
response = requests.get('https://api.example.com/data')
response.encoding = 'utf-8' # Set encoding to match the expected response format
data = response.text
print(data)

8. Using Sessions with Requests

To use a session object for making multiple requests to the same host, which can improve performance:

import requests
with requests.Session() as session:
session.headers.update({'Authorization': 'Bearer YOUR_ACCESS_TOKEN'})
response = session.get('https://api.example.com/data')
print(response.json())

9. Handling Redirects

To handle or disable redirects in requests:

import requests
response = requests.get('https://api.example.com/data', allow_redirects=False)
print(response.status_code)

10. Streaming Large Responses

To stream a large response to process it in chunks, rather than loading it all into memory:

import requests
response = requests.get('https://api.example.com/large-data', stream=True)
for chunk in response.iter_content(chunk_size=1024):
process(chunk) # Replace 'process' with your actual processing function

Working With Lists

1. Creating a List

To conjure a list into being:

# A list of mystical elements
elements = ['Earth', 'Air', 'Fire', 'Water']

2. Appending to a List

To append a new element to the end of a list:

elements.append('Aether')

3. Inserting into a List

To insert an element at a specific position in the list:

# Insert 'Spirit' at index 1
elements.insert(1, 'Spirit')

4. Removing from a List

To remove an element by value from the list:

elements.remove('Earth')  # Removes the first occurrence of 'Earth'

5. Popping an Element from a List

To remove and return an element at a given index (default is the last item):

last_element = elements.pop()  # Removes and returns the last element

6. Finding the Index of an Element

To find the index of the first occurrence of an element:

index_of_air = elements.index('Air')

7. List Slicing

To slice a list, obtaining a sub-list:

# Get elements from index 1 to 3
sub_elements = elements[1:4]

8. List Comprehension

To create a new list by applying an expression to each element of an existing one:

# Create a new list with lengths of each element
lengths = [len(element) for element in elements]

9. Sorting a List

To sort a list in ascending order (in-place):

elements.sort()

10. Reversing a List

To reverse the elements of a list in-place:

elements.reverse()

Working With Dictionaries

1. Creating a Dictionary

To forge a new dictionary:

# A tome of elements and their symbols
elements = {'Hydrogen': 'H', 'Helium': 'He', 'Lithium': 'Li'}

2. Adding or Updating Entries

To add a new entry or update an existing one:

elements['Carbon'] = 'C'  # Adds 'Carbon' or updates its value to 'C'

3. Removing an Entry

To banish an entry from the dictionary:

del elements['Lithium']  # Removes the key 'Lithium' and its value

4. Checking for Key Existence

To check if a key resides within the dictionary:

if 'Helium' in elements:
print('Helium is present')

5. Iterating Over Keys

To iterate over the keys in the dictionary:

for element in elements:
print(element) # Prints each key

6. Iterating Over Values

To traverse through the values in the dictionary:

for symbol in elements.values():
print(symbol) # Prints each value

7. Iterating Over Items

To journey through both keys and values together:

for element, symbol in elements.items():
print(f'{element}: {symbol}')

8. Dictionary Comprehension

To conjure a new dictionary through an incantation over an iterable:

# Squares of numbers from 0 to 4
squares = {x: x**2 for x in range(5)}

9. Merging Dictionaries

To merge two or more dictionaries, forming a new alliance of their entries:

alchemists = {'Paracelsus': 'Mercury'}
philosophers = {'Plato': 'Aether'}
merged = {**alchemists, **philosophers} # Python 3.5+

10. Getting a Value with Default

To retrieve a value safely, providing a default for absent keys:

element = elements.get('Neon', 'Unknown')  # Returns 'Unknown' if 'Neon' is not found

Working With The Operating System

1. Navigating File Paths

To craft and dissect paths, ensuring compatibility across realms (operating systems):

import os
# Craft a path compatible with the underlying OS
path = os.path.join('mystic', 'forest', 'artifact.txt')
# Retrieve the tome's directory
directory = os.path.dirname(path)
# Unveil the artifact's name
artifact_name = os.path.basename(path)

2. Listing Directory Contents

To reveal all entities within a mystical directory:

import os
contents = os.listdir('enchanted_grove')
print(contents)

3. Creating Directories

To conjure new directories within the fabric of the filesystem:

import os
# create a single directory
os.mkdir('alchemy_lab')
# create a hierarchy of directories
os.makedirs('alchemy_lab/potions/elixirs')

4. Removing Files and Directories

To erase files or directories, banishing their essence:

import os
# remove a file
os.remove('unnecessary_scroll.txt')
# remove an empty directory
os.rmdir('abandoned_hut')
# remove a directory and its contents
import shutil
shutil.rmtree('cursed_cavern')

5. Executing Shell Commands

To invoke the shell’s ancient powers directly from Python:

import subprocess
# Invoke the 'echo' incantation
result = subprocess.run(['echo', 'Revealing the arcane'], capture_output=True, text=True)
print(result.stdout)

6. Working with Environment Variables

To read and inscribe upon the ethereal environment variables:

import os
# Read the 'PATH' variable
path = os.environ.get('PATH')
# Create a new environment variable
os.environ['MAGIC'] = 'Arcane'

7. Changing the Current Working Directory

To shift your presence to another directory within the filesystem:

import os
# Traverse to the 'arcane_library' directory
os.chdir('arcane_library')

8. Path Existence and Type

To discern the existence of paths and their nature — be they file or directory:

import os
# Check if a path exists
exists = os.path.exists('mysterious_ruins')
# Ascertain if the path is a directory
is_directory = os.path.isdir('mysterious_ruins')
# Determine if the path is a file
is_file = os.path.isfile('ancient_manuscript.txt')

9. Working with Temporary Files

To summon temporary files and directories, fleeting and ephemeral:

import tempfile
# Create a temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False)
print(temp_file.name)
# Erect a temporary directory
temp_dir = tempfile.TemporaryDirectory()
print(temp_dir.name)

10. Getting System Information

To unveil information about the host system, its name, and the enchantments it supports:

import os
import platform
# Discover the operating system
os_name = os.name # 'posix', 'nt', 'java'
# Unearth detailed system information
system_info = platform.system() # 'Linux', 'Windows', 'Darwin'

Working With CLI — STDIN, STDOUT, STDERR

1. Reading User Input

Getting input from STDIN:

user_input = input("Impart your wisdom: ")
print(f"You shared: {user_input}")

2. Printing to STDOUT

To print messages to the console:

print("Behold, the message of the ancients!")

3. Formatted Printing

To weave variables into your messages with grace and precision:

name = "Merlin"
age = 300
print(f"{name}, of {age} years, speaks of forgotten lore.")

4. Reading Lines from STDIN

Trim whitespaces line by line from STDIN:

import sys
for line in sys.stdin:
print(f"Echo from the void: {line.strip()}")

5. Writing to STDERR

To send message to STDERR:

import sys
sys.stderr.write("Beware! The path is fraught with peril.\n")

6. Redirecting STDOUT

To redirect the STDOUT:

import sys
original_stdout = sys.stdout # Preserve the original STDOUT
with open('mystic_log.txt', 'w') as f:
sys.stdout = f # Redirect STDOUT to a file
print("This message is inscribed within the mystic_log.txt.")
sys.stdout = original_stdout # Restore STDOUT to its original glory

7. Redirecting STDERR

Redirecting STDERR:

import sys
with open('warnings.txt', 'w') as f:
sys.stderr = f # Redirect STDERR
print("This warning is sealed within warnings.txt.", file=sys.stderr)

8. Prompting for Passwords

To prompt for passwords:

import getpass
secret_spell = getpass.getpass("Whisper the secret spell: ")

9. Command Line Arguments

Working with and parsing command line arguments:

import sys
# The script's name is the first argument, followed by those passed by the invoker
script, first_arg, second_arg = sys.argv
print(f"Invoked with the sacred tokens: {first_arg} and {second_arg}")

10. Using Argparse for Complex CLI Interactions

Adding descriptions and options/arguments:

import argparse
parser = argparse.ArgumentParser(description="Invoke the ancient scripts.")
parser.add_argument('spell', help="The spell to cast")
parser.add_argument('--power', type=int, help="The power level of the spell")
args = parser.parse_args()
print(f"Casting {args.spell} with power {args.power}")

Working With Mathematical Operations and Permutations

1. Basic Arithmetic Operations

To perform basic arithmetic:

sum = 7 + 3  # Addition
difference = 7 - 3 # Subtraction
product = 7 * 3 # Multiplication
quotient = 7 / 3 # Division
remainder = 7 % 3 # Modulus (Remainder)
power = 7 ** 3 # Exponentiation

2. Working with Complex Numbers

To work with complex numbers:

z = complex(2, 3)  # Create a complex number 2 + 3j
real_part = z.real # Retrieve the real part
imaginary_part = z.imag # Retrieve the imaginary part
conjugate = z.conjugate() # Get the conjugate

3. Mathematical Functions

Common math functions:

import math
root = math.sqrt(16) # Square root
logarithm = math.log(100, 10) # Logarithm base 10 of 100
sine = math.sin(math.pi / 2) # Sine of 90 degrees (in radians)

4. Generating Permutations

Easy way to generate permutations from a given set:

from itertools import permutations
paths = permutations([1, 2, 3]) # Generate all permutations of the list [1, 2, 3]
for path in paths:
print(path)

5. Generating Combinations

Easy way to generate combinations:

from itertools import combinations
combos = combinations([1, 2, 3, 4], 2) # Generate all 2-element combinations
for combo in combos:
print(combo)

6. Random Number Generation

To get a random number:

import random
num = random.randint(1, 100) # Generate a random integer between 1 and 100

7. Working with Fractions

When you need to work with fractions:

from fractions import Fraction
f = Fraction(3, 4) # Create a fraction 3/4
print(f + 1) # Add a fraction and an integer

8. Statistical Functions

To get Average, Median, and Standard Deviation:

import statistics
data = [1, 2, 3, 4, 5]
mean = statistics.mean(data) # Average
median = statistics.median(data) # Median
stdev = statistics.stdev(data) # Standard Deviation

9. Trigonometric Functions

To work with trigonometry:

import math
angle_rad = math.radians(60) # Convert 60 degrees to radians
cosine = math.cos(angle_rad) # Cosine of the angle

10. Handling Infinity and NaN

To work with Infinity and NaN:

import math
infinity = math.inf # Representing infinity
not_a_number = math.nan # Representing a non-number (NaN)

Working With Databases

1. Establishing a Connection

To create a connection to a Postgres Database:

import psycopg2
connection = psycopg2.connect(
dbname='your_database',
user='your_username',
password='your_password',
host='your_host'
)

2. Creating a Cursor

To create a database cursor, enabling the traversal and manipulation of records:

cursor = connection.cursor()

3. Executing a Query

Selecting data from Database:

cursor.execute("SELECT * FROM your_table")

4. Fetching Query Results

Fetching data with a cursor:

records = cursor.fetchall()
for record in records:
print(record)

5. Inserting Records

To insert data into tables in a database:

cursor.execute("INSERT INTO your_table (column1, column2) VALUES (%s, %s)", ('value1', 'value2'))
connection.commit() # Seal the transaction

6. Updating Records

To alter the records:

cursor.execute("UPDATE your_table SET column1 = %s WHERE column2 = %s", ('new_value', 'condition_value'))
connection.commit()

7. Deleting Records

To delete records from the table:

cursor.execute("DELETE FROM your_table WHERE condition_column = %s", ('condition_value',))
connection.commit()

8. Creating a Table

To create a new table, defining its structure:

cursor.execute("""
CREATE TABLE your_new_table (
id SERIAL PRIMARY KEY,
column1 VARCHAR(255),
column2 INTEGER
)
"""
)
connection.commit()

9. Dropping a Table

To drop a table:

cursor.execute("DROP TABLE if exists your_table")
connection.commit()

10. Using Transactions

To use transactions for atomicity:

try:
cursor.execute("your first transactional query")
cursor.execute("your second transactional query")
connection.commit() # Commit if all is well
except Exception as e:
connection.rollback() # Rollback in case of any issue
print(f"An error occurred: {e}")

Working With Async IO (Asyncrounous Programming)

1. Defining an Asynchronous Function

To declare an async function:

import asyncio
async def fetch_data():
print("Fetching data...")
await asyncio.sleep(2) # Simulate an I/O operation
print("Data retrieved.")

2. Running an Asynchronous Function

To invoke an asynchronous function and await them:

async def main():
await fetch_data()
asyncio.run(main())

3. Awaiting Multiple Coroutines

To invoke multiple async functions and await all:

async def main():
task1 = fetch_data()
task2 = fetch_data()
await asyncio.gather(task1, task2)
asyncio.run(main())

4. Creating Tasks

To dispatch tasks:

async def main():
task1 = asyncio.create_task(fetch_data())
task2 = asyncio.create_task(fetch_data())
await task1
await task2
asyncio.run(main())

5. Asynchronous Iteration

To traverse through asynchronously, allowing time for other functions in between:

async def fetch_item(item):
await asyncio.sleep(1) # Simulate an I/O operation
print(f"Fetched {item}")
async def main():
items = ['potion', 'scroll', 'wand']
for item in items:
await fetch_item(item)
asyncio.run(main())

6. Using Asynchronous Context Managers

To ensure resources are managed within the bounds of an asynchronous function:

async def async_context_manager():
print("Entering context")
await asyncio.sleep(1)
print("Exiting context")
async def main():
async with async_context_manager():
print("Within context")
asyncio.run(main())

7. Handling Exceptions in Asynchronous Code

To gracefully catch and manage the errors with async functions:

async def risky_spell():
await asyncio.sleep(1)
raise ValueError("The spell backfired!")
async def main():
try:
await risky_spell()
except ValueError as e:
print(f"Caught an error: {e}")
asyncio.run(main())

8. Asynchronous Generators

To create async generators, each arriving in its own time:

async def fetch_items():
items
= ['crystal', 'amulet', 'dagger']
for item in items:
await asyncio.sleep(1)
yield item
async def main():
async for item in fetch_items():
print(f"Found {item}")
asyncio.run(main())

9. Using Semaphores

To limit the number of concurrent tasks:

async def guarded_spell(semaphore, item):
async with semaphore:
print(f"Processing {item}")
await asyncio.sleep(1)
async def main():
semaphore = asyncio.Semaphore(2) # Allow 2 concurrent tasks
await asyncio.gather(*(guarded_spell(semaphore, i) for i in range(5)))
asyncio.run(main())

10. Event Loops

To directly engage with the asynchronous loop, customizing the flow of execution:

async def perform_spell():
print("Casting spell...")
await asyncio.sleep(1)
print("Spell cast.")
loop = asyncio.get_event_loop()
try:
loop.run_until_complete(perform_spell())
finally:
loop.close()

Working With Networks, Sockets, and Network Interfaces

1. Creating a Socket

To create a socket for network communication:

import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

2. Connecting to a Remote Server

To establish a link with a remote server through the socket:

s.connect(('example.com', 80))  # Connect to example.com on port 80

3. Sending Data

To dispatch data through the network to a connected entity:

s.sendall(b'Hello, server')

4. Receiving Data

To receive data from the network:

data = s.recv(1024)  # Receive up to 1024 bytes
print('Received', repr(data))

5. Closing a Socket

To gracefully close the socket, severing the network link:

s.close()

6. Creating a Listening Socket

To open a socket that listens for incoming connections:

serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
serversocket.bind(('localhost', 8080)) # Bind to localhost on port 8080
serversocket.listen() # Listen for incoming connections

7. Accepting Connections

To accept and establish a network link:

clientsocket, address = serversocket.accept()
print(f"Connection from {address} has been established.")

8. Non-blocking Socket Operations

To set a socket’s mode to non-blocking:

s.setblocking(False)

9. Working with UDP Sockets

To create a socket for UDP, a protocol for quicker, but less reliable communication:

udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
udp_socket.bind(('localhost', 8081)) # Bind UDP socket to localhost on port 8081

10. Enumerating Network Interfaces

To discover the names and addresses of the machine’s network interfaces:

import socket
import netifaces
for interface in netifaces.interfaces():
addr = netifaces.ifaddresses(interface).get(netifaces.AF_INET)
if addr:
print(f"Interface: {interface}, Address: {addr[0]['addr']}")

#

Working With Pandas Library (Dataframes)

1. Creating a DataFrame

To create a DataFrame with your own columns and data:

import pandas as pd
data = {
'Element': ['Earth', 'Water', 'Fire', 'Air'],
'Symbol': ['🜃', '🜄', '🜂', '🜁']
}
df = pd.DataFrame(data)

2. Reading Data from a CSV File

To read data from a CSV file, transforming it into a DataFrame:

df = pd.read_csv('elements.csv')

3. Inspecting the First Few Rows

To get first rows from dataframe:

print(df.head())

4. Selecting Columns

To select specific columns from dataframe:

symbols = df['Symbol']

5. Filtering Rows

To sift through the DataFrame, selecting rows that meet your criteria:

fire_elements = df[df['Element'] == 'Fire']

6. Creating New Columns

To create new columns in DataFrame derived from the data within:

df['Length'] = df['Element'].apply(len)

7. Grouping and Aggregating Data

To gather your data into groups and extract new data through aggregation:

element_groups = df.groupby('Element').agg({'Length': 'mean'})

8. Merging DataFrames

To weave together two DataFrames, joining them by a shared key:

df2 = pd.DataFrame({'Element': ['Earth', 'Fire'], 'Quality': ['Solid', 'Plasma']})
merged_df = pd.merge(df, df2, on='Element')

9. Handling Missing Data

To clean your DataFrame, filling the voids where data is absent:

df.fillna(value='Unknown', inplace=True)

10. Pivoting and Reshaping Data

To transmute the shape of your DataFrame, revealing hidden patterns and structures with a pivot operation:

pivoted_df = df.pivot(index='Element', columns='Symbol', values='Length')

Working With Numpy Library (Arrays)

1. Creating a NumPy Array

To create an array:

import numpy as np
array = np.array([1, 2, 3, 4, 5])

2. Array of Zeros or Ones

To create an array filled with zeros:

zeros = np.zeros((3, 3))  # A 3x3 array of zeros
ones = np.ones((2, 4)) # A 2x4 array of ones

3. Creating a Range of Numbers

To create a sequence of numbers:

range_array = np.arange(10, 50, 5)  # From 10 to 50, step by 5

4. Creating a Linearly Spaced Array

To create a series of values, evenly spaced between two bounds:

linear_spaced = np.linspace(0, 1, 5)  # 5 values from 0 to 1

5. Reshaping an Array

To transmute the shape of an array, altering its dimensions:

reshaped = np.arange(9).reshape(3, 3)  # Reshape a 1D array into a 3x3 2D array

6. Basic Array Operations

To perform elemental manipulations upon the arrays:

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
sum = a + b # Element-wise addition
difference = b - a # Element-wise subtraction
product = a * b # Element-wise multiplication

7. Matrix Multiplication

Basic dot product Operation:

result = np.dot(a.reshape(1, 3), b.reshape(3, 1))  # Dot product of a and b

8. Accessing Array Elements

Accessing array elements with useful syntax:

element = a[2]  # Retrieve the third element of array 'a'
row = reshaped[1, :] # Retrieve the second row of 'reshaped'

9. Boolean Indexing

To filter the elements of an array through the sieve of conditionals:

filtered = a[a > 2]  # Elements of 'a' greater than 2

10. Aggregations and Statistics

Statistical operations on np arrays:

mean = np.mean(a)
maximum = np.max(a)
sum = np.sum(a)

Working With Matplotlib Library (Data Visualization)

1. Creating a Basic Plot

To create a plot visualization:

import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [1, 4, 9, 16, 25]
plt.plot(x, y)
plt.show()

2. Adding Titles and Labels

To create names for axes and title your plot to give better context:

plt.plot(x, y)
plt.title('Growth Over Time')
plt.xlabel('Time')
plt.ylabel('Growth')
plt.show()

3. Creating a Scatter Plot

Creating a scatter plot:

plt.scatter(x, y)
plt.show()

4. Customizing Line Styles and Markers

To add symbols into your plot, enriching its usefulness:

plt.plot(x, y, linestyle='--', marker='o', color='b')
plt.show()

5. Creating Multiple Plots on the Same Axes

Creating Multiple Plots on the Same Axes:

z = [2, 3, 4, 5, 6]
plt.plot(x, y)
plt.plot(x, z)
plt.show()

6. Creating Subplots

To create subplots:

fig, ax = plt.subplots(2, 1)  # 2 rows, 1 column
ax[0].plot(x, y)
ax[1].plot(x, z)
plt.show()

7. Creating a Histogram

To create a histogram:

data = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]
plt.hist(data, bins=4)
plt.show()

8. Adding a Legend

To create a legend for the plot:

plt.plot(x, y, label='Growth')
plt.plot(x, z, label='Decay')
plt.legend()
plt.show()

9. Customizing Ticks

To create your own marks upon the axes, defining the scale of your values:

plt.plot(x, y)
plt.xticks([1, 2, 3, 4, 5], ['One', 'Two', 'Three', 'Four', 'Five'])
plt.yticks([0, 5, 10, 15, 20, 25], ['0', '5', '10', '15', '20', '25+'])
plt.show()

10. Saving Figures

To save the plot as a .png:

plt.plot(x, y)
plt.savefig('growth_over_time.png')

Working With Scikit-Learn Library (Machine Learning)

1. Loading a Dataset

To work with datasets for your ML experiments

from sklearn import datasets
iris = datasets.load_iris()
X, y = iris.data, iris.target

2. Splitting Data into Training and Test Sets

To divide your data, dedicating portions to training and evaluation:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

3. Training a Model

Training a ML Model using RandomForestClassifier:

from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
model.fit(X_train, y_train)

4. Making Predictions

To access the model predictions:

predictions = model.predict(X_test)

5. Evaluating Model Performance

To evaluate your model, measuring its accuracy in prediction:

from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_test, predictions)
print(f"Model accuracy: {accuracy}")

6. Using Cross-Validation

To use Cross-Validation:

from sklearn.model_selection import cross_val_score
scores = cross_val_score(model, X, y, cv=5)
print(f"Cross-validation scores: {scores}")

7. Feature Scaling

To create the appropriate scales of your features, allowing the model to learn more effectively:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

8. Parameter Tuning with Grid Search

To refine your model’s parameters, seeking the optimal combination:

from sklearn.model_selection import GridSearchCV
param_grid = {'n_estimators': [10, 50, 100], 'max_depth': [None, 10, 20]}
grid_search = GridSearchCV(model, param_grid, cv=5)
grid_search.fit(X_train, y_train)

9. Pipeline Creation

To streamline your data processing and modeling steps, crafting a seamless flow:

from sklearn.pipeline import Pipeline
pipeline = Pipeline([
('scaler', StandardScaler()),
('classifier', RandomForestClassifier())
])
pipeline.fit(X_train, y_train)

10. Saving and Loading a Model

To preserve your model:

import joblib
# Saving the model
joblib.dump(model, 'model.joblib')
# Loading the model
loaded_model = joblib.load('model.joblib')

Working With Plotly Library (Interactive Data Visualization)

1. Creating a Basic Line Chart

To create a line chart:

import plotly.graph_objs as go
import plotly.io as pio
x = [1, 2, 3, 4, 5]
y = [1, 4, 9, 16, 25]
fig = go.Figure(data=go.Scatter(x=x, y=y, mode='lines'))
pio.show(fig)

2. Creating a Scatter Plot

To create a scatter plot:

fig = go.Figure(data=go.Scatter(x=x, y=y, mode='markers'))
pio.show(fig)

3. Creating a Bar Chart

To Create a Bar Chart:

categories = ['A', 'B', 'C', 'D', 'E']
values = [10, 20, 15, 30, 25]
fig = go.Figure(data=go.Bar(x=categories, y=values))
pio.show(fig)

4. Creating a Pie Chart

To create a Pie Chart:

labels = ['Earth', 'Water', 'Fire', 'Air']
sizes = [25, 35, 20, 20]
fig = go.Figure(data=go.Pie(labels=labels, values=sizes))
pio.show(fig)

5. Creating a Histogram

To create a Histogram:

data = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]
fig = go.Figure(data=go.Histogram(x=data))
pio.show(fig)

6. Creating Box Plots

To create a Box Plot:

data = [1, 2, 2, 3, 4, 4, 4, 5, 5, 6]
fig = go.Figure(data=go.Box(y=data))
pio.show(fig)

7. Creating Heatmaps

To create a heatmap:

import numpy as np
z = np.random.rand(10, 10) # Generate random data
fig = go.Figure(data=go.Heatmap(z=z))
pio.show(fig)

8. Creating 3D Surface Plots

To create a 3D Surface Plot:

z = np.random.rand(20, 20)  # Generate random data
fig = go.Figure(data=go.Surface(z=z))
pio.show(fig)

9. Creating Subplots

To create a subplot:

from plotly.subplots import make_subplots
fig = make_subplots(rows=1, cols=2)
fig.add_trace(go.Scatter(x=x, y=y, mode='lines'), row=1, col=1)
fig.add_trace(go.Bar(x=categories, y=values), row=1, col=2)
pio.show(fig)

10. Creating Interactive Time Series

To work with Time Series:

import pandas as pd
dates = pd.date_range('20230101', periods=5)
values = [10, 11, 12, 13, 14]
fig = go.Figure(data=go.Scatter(x=dates, y=values, mode='lines+markers'))
pio.show(fig)

Working With Dates and Times

1. Getting the Current Date and Time

To get the current data and time:

from datetime import datetime
now = datetime.now()
print(f"Current date and time: {now}")

2. Creating Specific Date and Time

To conjure a moment from the past or future, crafting it with precision:

specific_time = datetime(2023, 1, 1, 12, 30)
print(f"Specific date and time: {specific_time}")

3. Formatting Dates and Times

Formatting Dates and Times:

formatted = now.strftime("%Y-%m-%d %H:%M:%S")
print(f"Formatted date and time: {formatted}")

4. Parsing Dates and Times from Strings

Parsing Dates and Times from Strings:

date_string = "2023-01-01 15:00:00"
parsed_date = datetime.strptime(date_string, "%Y-%m-%d %H:%M:%S")
print(f"Parsed date and time: {parsed_date}")

5. Working with Time Deltas

To traverse the distances between moments, leaping forward or backward through time:

from datetime import timedelta
delta = timedelta(days=7)
future_date = now + delta
print(f"Date after 7 days: {future_date}")

6. Comparing Dates and Times

Date and Times comparisons:

if specific_time > now:
print("Specific time is in the future.")
else:
print("Specific time has passed.")

7. Extracting Components from a Date/Time

To extract dates year, month, day, and more:

year = now.year
month = now.month
day = now.day
hour = now.hour
minute = now.minute
second = now.second
print(f"Year: {year}, Month: {month}, Day: {day}, Hour: {hour}, Minute: {minute}, Second: {second}")

8. Working with Time Zones

To work with time zones honoring the local time:

from datetime import timezone, timedelta
utc_time = datetime.now(timezone.utc)
print(f"Current UTC time: {utc_time}")
# Adjusting to a specific timezone (e.g., EST)
est_time = utc_time - timedelta(hours=5)
print(f"Current EST time: {est_time}")

9. Getting the Weekday

To identify the day of the week:

weekday = now.strftime("%A")
print(f"Today is: {weekday}")

10. Working with Unix Timestamps

To converse with the ancient epochs, translating their count from the dawn of Unix:

timestamp = datetime.timestamp(now)
print(f"Current timestamp: {timestamp}")
# Converting a timestamp back to a datetime
date_from_timestamp = datetime.fromtimestamp(timestamp)
print(f"Date from timestamp: {date_from_timestamp}")

Working With More Advanced List Comprehensions and Lambda Functions

1. Nested List Comprehensions

To work with nested list Comprehensions:

matrix = [[j for j in range(5)] for i in range(3)]
print(matrix) # Creates a 3x5 matrix

2. Conditional List Comprehensions

To filter elements that meet your criteria:

filtered = [x for x in range(10) if x % 2 == 0]
print(filtered) # Even numbers from 0 to 9

3. List Comprehensions with Multiple Iterables

To merge and transform elements from multiple sources in a single dance:

pairs = [(x, y) for x in [1, 2, 3] for y in [3, 1, 4] if x != y]
print(pairs) # Pairs of non-equal elements

4. Using Lambda Functions

To summon anonymous functions, ephemeral and concise, for a single act of magic:

square = lambda x: x**2
print(square(5)) # Returns 25

5. Lambda Functions in List Comprehensions

To employ lambda functions within your list comprehensions:

squared = [(lambda x: x**2)(x) for x in range(5)]
print(squared) # Squares of numbers from 0 to 4

6. List Comprehensions for Flattening Lists

To flatten a nested list, spreading its elements into a single dimension:

nested = [[1, 2, 3], [4, 5], [6, 7]]
flattened = [x for sublist in nested for x in sublist]
print(flattened)

7. Applying Functions to Elements

To apply a transformation function to each element:

import math
transformed = [math.sqrt(x) for x in range(1, 6)]
print(transformed) # Square roots of numbers from 1 to 5

8. Using Lambda with Map and Filter

To map and filter lists:

mapped = list(map(lambda x: x**2, range(5)))
filtered = list(filter(lambda x: x > 5, mapped))
print(mapped) # Squares of numbers from 0 to 4
print(filtered) # Elements greater than 5

9. List Comprehensions with Conditional Expressions

List Comprehensions with Condidtional Expressions:

conditional = [x if x > 2 else x**2 for x in range(5)]
print(conditional) # Squares numbers less than or equal to 2, passes others unchanged

10. Complex Transformations with Lambda

To conduct intricate transformations, using lambda functions:

complex_transformation = list(map(lambda x: x**2 if x % 2 == 0 else x + 5, range(5)))
print(complex_transformation) # Applies different transformations based on even-odd condition

Working With Object Oriented Programming

1. Defining a Class

Creating a class:

class Wizard:
def __init__(self, name, power):
self.name = name
self.power = power
def cast_spell(self):
print(f"{self.name} casts a spell with power {self.power}!")

2. Creating an Instance

To create an instance of your class:

merlin = Wizard("Merlin", 100)

3. Invoking Methods

To call methods on instance of class:

merlin.cast_spell()

4. Inheritance

Subclassing:

class ArchWizard(Wizard):
def __init__(self, name, power, realm):
super().__init__(name, power)
self.realm = realm
def summon_familiar(self):
print(f"{self.name} summons a familiar from the {self.realm} realm.")

5. Overriding Methods

To overide base classes:

class Sorcerer(Wizard):
def cast_spell(self):
print(f"{self.name} casts a powerful dark spell!")

6. Polymorphism

To interact with different forms through a common interface:

def unleash_magic(wizard):
wizard.cast_spell()
unleash_magic(merlin)
unleash_magic(Sorcerer("Voldemort", 90))

7. Encapsulation

To use information hiding:

class Alchemist:
def __init__(self, secret_ingredient):
self.__secret = secret_ingredient
def reveal_secret(self):
print(f"The secret ingredient is {self.__secret}")

8. Composition

To assemble Objects from simpler ones:

class Spellbook:
def __init__(self, spells):
self.spells = spells
class Mage:
def __init__(self, name, spellbook):
self.name = name
self.spellbook = spellbook

9. Class Methods and Static Methods

To bind actions to the class itself or liberate them from the instance, serving broader purposes:

class Enchanter:
@staticmethod
def enchant(item):
print(f"{item} is enchanted!")
@classmethod
def summon(cls):
print("A new enchanter is summoned.")

10. Properties and Setters

To elegantly manage access to an entity’s attributes, guiding their use and protection:

class Elementalist:
def __init__(self, element):
self._element = element
@property
def element(self):
return self._element
@element.setter
def element(self, value):
if value in ["Fire", "Water", "Earth", "Air"]:
self._element = value
else:
print("Invalid element!")

Working With Decorators

1. Basic Decorator

To create a simple decorator that wraps a function:

def my_decorator(func):
def wrapper():
print("Something is happening before the function is called.")
func()
print("Something is happening after the function is called.")
return wrapper

@my_decorator
def say_hello():
print("Hello!")

say_hello()

2. Decorator with Arguments

To pass arguments to the function within a decorator:

def my_decorator(func):
def wrapper(*args, **kwargs):
print("Before call")
result = func(*args, **kwargs)
print("After call")
return result
return wrapper

@my_decorator
def greet(name):
print(f"Hello {name}")

greet("Alice")

3. Using functools.wraps

To preserve the metadata of the original function when decorating:

from functools import wraps

def my_decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
"""Wrapper function"""
return func(*args, **kwargs)
return wrapper

@my_decorator
def greet(name):
"""Greet someone"""
print(f"Hello {name}")

print(greet.__name__) # Outputs: 'greet'
print(greet.__doc__) # Outputs: 'Greet someone'

4. Class Decorator

To create a decorator using a class:

class MyDecorator:
def __init__(self, func):
self.func = func
def __call__(self, *args, **kwargs):
print("Before call")
self.func(*args, **kwargs)
print("After call")

@MyDecorator
def greet(name):
print(f"Hello {name}")

greet("Alice")

5. Decorator with Arguments

To create a decorator that accepts its own arguments:

def repeat(times):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
for _ in range(times):
func(*args, **kwargs)
return wrapper
return decorator

@repeat(3)
def say_hello():
print("Hello")

say_hello()

6. Method Decorator

To apply a decorator to a method within a class:

def method_decorator(func):
@wraps(func)
def wrapper(self, *args, **kwargs):
print("Method Decorator")
return func(self, *args, **kwargs)
return wrapper

class MyClass:
@method_decorator
def greet(self, name):
print(f"Hello {name}")

obj = MyClass()
obj.greet("Alice")

7. Stacking Decorators

To apply multiple decorators to a single function:

@my_decorator
@repeat(2)
def greet(name):
print(f"Hello {name}")

greet("Alice")

8. Decorator with Optional Arguments

Creating a decorator that works with or without arguments:

def smart_decorator(arg=None):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
if arg:
print(f"Argument: {arg}")
return func(*args, **kwargs)
return wrapper
if callable(arg):
return decorator(arg)
return decorator

@smart_decorator
def no_args():
print("No args")

@smart_decorator("With args")
def with_args():
print("With args")

no_args()
with_args()

9. Class Method Decorator

To decorate a class method:

class MyClass:
@classmethod
@my_decorator
def class_method(cls):
print("Class method called")

MyClass.class_method()

10. Decorator for Static Method

To decorate a static method:

class MyClass:
@staticmethod
@my_decorator
def static_method():
print("Static method called")

MyClass.static_method()

Working With GraphQL

1. Setting Up a GraphQL Client

To work with GraphQL:

from gql import gql, Client
from gql.transport.requests import RequestsHTTPTransport
transport = RequestsHTTPTransport(url='https://your-graphql-endpoint.com/graphql')
client = Client(transport=transport, fetch_schema_from_transport=True)

2. Executing a Simple Query

Executing a Query:

query = gql('''
{
allWizards {
id
name
power
}
}
'''
)

result = client.execute(query)
print(result)

3. Executing a Query with Variables

Query with Variables:

query = gql('''
query GetWizards($element: String!) {
wizards(element: $element) {
id
name
}
}
'''
)
params = {"element": "Fire"}
result = client.execute(query, variable_values=params)
print(result)

4. Mutations

To create and execute a mutation:

mutation = gql('''
mutation CreateWizard($name: String!, $element: String!) {
createWizard(name: $name, element: $element) {
wizard {
id
name
}
}
}
'''
)
params = {"name": "Gandalf", "element": "Light"}
result = client.execute(mutation, variable_values=params)
print(result)

5. Handling Errors

Error handling:

from gql import gql, Client
from gql.transport.exceptions import TransportQueryError
try:
result = client.execute(query)
except TransportQueryError as e:
print(f"GraphQL Query Error: {e}")

6. Subscriptions

Working with Subscriptions:

subscription = gql('''
subscription {
wizardUpdated {
id
name
power
}
}
'''
)
for result in client.subscribe(subscription):
print(result)

7. Fragments

Working with Fragments:

query = gql('''
fragment WizardDetails on Wizard {
name
power
}
query {
allWizards {
...WizardDetails
}
}
'''
)
result = client.execute(query)
print(result)

8. Inline Fragments

To tailor the response based on the type of the object returned:

query = gql('''
{
search(text: "magic") {
__typename
... on Wizard {
name
power
}
... on Spell {
name
effect
}
}
}
'''
)
result = client.execute(query)
print(result)

9. Using Directives

To dynamically include or skip fields in your queries based on conditions:

query = gql('''
query GetWizards($withPower: Boolean!) {
allWizards {
name
power @include(if: $withPower)
}
}
'''
)
params = {"withPower": True}
result = client.execute(query, variable_values=params)
print(result)

10. Batching Requests

To combine multiple operations into a single request, reducing network overhead:

from gql import gql, Client
from gql.transport.requests import RequestsHTTPTransport

transport = RequestsHTTPTransport(url='https://your-graphql-endpoint.com/graphql', use_json=True)
client = Client(transport=transport, fetch_schema_from_transport=True)

query1 = gql('query { wizard(id: "1") { name } }')
query2 = gql('query { allSpells { name } }')

results = client.execute([query1, query2])
print(results)

Working With Regular Expressions

1. Basic Pattern Matching

To find a match for a pattern within a string:

import re
text = "Search this string for patterns."
match = re.search(r"patterns", text)
if match:
print("Pattern found!")

2. Compiling Regular Expressions

To compile a regular expression for repeated use:

pattern = re.compile(r"patterns")
match = pattern.search(text)

3. Matching at the Beginning or End

To check if a string starts or ends with a pattern:

if re.match(r"^Search", text):
print("Starts with 'Search'")
if re.search(r"patterns.$", text):
print("Ends with 'patterns.'")

4. Finding All Matches

To find all occurrences of a pattern in a string:

all_matches = re.findall(r"t\w+", text)  # Finds words starting with 't'
print(all_matches)

5. Search and Replace (Substitution)

To replace occurrences of a pattern within a string:

replaced_text = re.sub(r"string", "sentence", text)
print(replaced_text)

6. Splitting a String

To split a string by occurrences of a pattern:

words = re.split(r"\s+", text)  # Split on one or more spaces
print(words)

7. Escaping Special Characters

To match special characters literally, escape them:

escaped = re.search(r"\bfor\b", text)  # \b is a word boundary

8. Grouping and Capturing

To group parts of a pattern and extract their values:

match = re.search(r"(\w+) (\w+)", text)
if match:
print(match.group()) # The whole match
print(match.group(1)) # The first group

9. Non-Capturing Groups

To define groups without capturing them:

match = re.search(r"(?:\w+) (\w+)", text)
if match:
print(match.group(1)) # The first (and only) group

10. Lookahead and Lookbehind Assertions

To match a pattern based on what comes before or after it without including it in the result:

lookahead = re.search(r"\b\w+(?= string)", text)  # Word before ' string'
lookbehind = re.search(r"(?<=Search )\w+", text) # Word after 'Search '
if lookahead:
print(lookahead.group())
if lookbehind:
print(lookbehind.group())

11. Flags to Modify Pattern Matching Behavior

To use flags like re.IGNORECASE to change how patterns are matched:

case_insensitive = re.findall(r"search", text, re.IGNORECASE)
print(case_insensitive)

12. Using Named Groups

To assign names to groups and reference them by name:

match = re.search(r"(?P<first>\w+) (?P<second>\w+)", text)
if match:
print(match.group('first'))
print(match.group('second'))

13. Matching Across Multiple Lines

To match patterns over multiple lines using the re.MULTILINE flag:

multi_line_text = "Start\nmiddle end"
matches = re.findall(r"^m\w+", multi_line_text, re.MULTILINE)
print(matches)

14. Lazy Quantifiers

To match as few characters as possible using lazy quantifiers (*?+???):

html = "<body><h1>Title</h1></body>"
match = re.search(r"<.*?>", html)
if match:
print(match.group()) # Matches '<body>'

15. Verbose Regular Expressions

To use re.VERBOSE for more readable regular expressions:

pattern = re.compile(r"""
\b # Word boundary
\w+ # One or more word characters
\s # Space
"""
, re.VERBOSE)
match = pattern.search(text)

Working With Strings

1. Concatenating Strings

To join strings together:

greeting = "Hello"
name = "Alice"
message = greeting + ", " + name + "!"
print(message)

2. String Formatting with str.format

To insert values into a string template:

message = "{}, {}. Welcome!".format(greeting, name)
print(message)

3. Formatted String Literals (f-strings)

To embed expressions inside string literals (Python 3.6+):

message = f"{greeting}, {name}. Welcome!"
print(message)

4. String Methods — Case Conversion

To change the case of a string:

s = "Python"
print(s.upper()) # Uppercase
print(s.lower()) # Lowercase
print(s.title()) # Title Case

5. String Methods — striprstriplstrip

To remove whitespace or specific characters from the ends of a string:

s = "   trim me   "
print(s.strip()) # Both ends
print(s.rstrip()) # Right end
print(s.lstrip()) # Left end

6. String Methods — startswithendswith

To check the start or end of a string for specific text:

s = "filename.txt"
print(s.startswith("file")) # True
print(s.endswith(".txt")) # True

7. String Methods — splitjoin

To split a string into a list or join a list into a string:

s = "split,this,string"
words = s.split(",") # Split string into list
joined = " ".join(words) # Join list into string
print(words)
print(joined)

8. String Methods — replace

To replace parts of a string with another string:

s = "Hello world"
new_s = s.replace("world", "Python")
print(new_s)

9. String Methods — findindex

To find the position of a substring within a string:

s = "look for a substring"
position = s.find("substring") # Returns -1 if not found
index = s.index("substring") # Raises ValueError if not found
print(position)
print(index)

10. String Methods — Working with Characters

To process individual characters in a string:

s = "characters"
for char in s:
print(char) # Prints each character on a new line

11. String Methods — isdigitisalphaisalnum

To check if a string contains only digits, alphabetic characters, or alphanumeric characters:

print("123".isdigit())   # True
print("abc".isalpha()) # True
print("abc123".isalnum())# True

12. String Slicing

To extract a substring using slicing:

s = "slice me"
sub = s[2:7] # From 3rd to 7th character
print(sub)

13. String Length with len

To get the length of a string:

s = "length"
print(len(s)) # 6

14. Multiline Strings

To work with strings spanning multiple lines:

multi = """Line one
Line two
Line three"""

print(multi)

15. Raw Strings

To treat backslashes as literal characters, useful for regex patterns and file paths:

path = r"C:\User\name\folder"
print(path)

Working With Web Scraping

1. Fetching Web Pages with requests

To retrieve the content of a web page:

import requests

url = 'https://example.com'
response = requests.get(url)
html = response.text

2. Parsing HTML with BeautifulSoup

To parse HTML and extract data:

from bs4 import BeautifulSoup
soup = BeautifulSoup(html, 'html.parser')
print(soup.prettify()) # Pretty-print the HTML

3. Navigating the HTML Tree

To find elements using tags:

title = soup.title.text  # Get the page title
headings = soup.find_all('h1') # List of all <h1> tags

4. Using CSS Selectors

To select elements using CSS selectors:

articles = soup.select('div.article')  # All elements with class 'article' inside a <div>

5. Extracting Data from Tags

To extract text and attributes from HTML elements:

for article in articles:
title = article.h2.text # Text inside the <h2> tag
link = article.a['href'] # 'href' attribute of the <a> tag
print(title, link)

6. Handling Relative URLs

To convert relative URLs to absolute URLs:

from urllib.parse import urljoin
absolute_urls = [urljoin(url, link) for link in relative_urls]

7. Dealing with Pagination

To scrape content across multiple pages:

base_url = "https://example.com/page/"
for page in range(1, 6): # For 5 pages
page_url = base_url + str(page)
response = requests.get(page_url)
# Process each page's content

8. Handling AJAX Requests

To scrape data loaded by AJAX requests:

# Find the URL of the AJAX request (using browser's developer tools) and fetch it
ajax_url = 'https://example.com/ajax_endpoint'
data = requests.get(ajax_url).json() # Assuming the response is JSON

9. Using Regular Expressions in Web Scraping

To extract data using regular expressions:

import re
emails = re.findall(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', html)

10. Respecting robots.txt

To check robots.txt for scraping permissions:

from urllib.robotparser import RobotFileParser

rp = RobotFileParser()
rp.set_url('https://example.com/robots.txt')
rp.read()
can_scrape = rp.can_fetch('*', url)

11. Using Sessions and Cookies

To maintain sessions and handle cookies:

session = requests.Session()
session.get('https://example.com/login')
session.cookies.set('key', 'value') # Set cookies, if needed
response = session.get('https://example.com/protected_page')

12. Scraping with Browser Automation (selenium Library)

To scrape dynamic content rendered by JavaScript:

from selenium import webdriver
browser = webdriver.Chrome()
browser.get('https://example.com')
content = browser.page_source
# Parse and extract data using BeautifulSoup, etc.
browser.quit()

13. Error Handling in Web Scraping

To handle errors and exceptions:

try:
response = requests.get(url, timeout=5)
response.raise_for_status() # Raises an error for bad status codes
except requests.exceptions.RequestException as e:
print(f"Error: {e}")

14. Asynchronous Web Scraping

To scrape websites asynchronously for faster data retrieval:

import aiohttp
import asyncio

async def fetch(url):
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
return await response.text()

urls = ['https://example.com/page1', 'https://example.com/page2']
loop = asyncio.get_event_loop()
pages = loop.run_until_complete(asyncio.gather(*(fetch(url) for url in urls)))

15. Data Storage (CSV, Database)

To store scraped data in a CSV file or a database:

import csv

with open('output.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['Title', 'URL'])
for article in articles:
writer.writerow([article['title'], article['url']])

Working With pip (Package Management)

1. Installing a Package

To summon a library from the vast repositories, incorporating its power into your environment:

pip install numpy

2. Listing Installed Packages

To survey the compendium of libraries that reside within your realm, noting their versions and lineage:

pip list

3. Upgrading a Package

To imbue an installed library with enhanced powers and capabilities, elevating it to its latest form:

pip install --upgrade numpy

4. Uninstalling a Package

To uninstall a package:

pip uninstall numpy

5. Searching for Packages

Searching packages:

pip search "data visualization"

6. Installing Specific Versions of a Package

To install a specific version:

pip install numpy==1.18.5

7. Generating a Requirements File

Requirements file:

pip freeze > requirements.txt

8. Installing Packages from a Requirements File

To conjure a symphony of libraries in unison, each aligned with the notations in your tome of requirements:

pip install -r requirements.txt

9. Using Virtual Environments

Create virtual Environments to manage package conflicts:

# Create a virtual environment named 'venv'
python -m venv venv

# Activate the virtual environment
# On Windows
.\venv\Scripts\activate

# On Unix or MacOS
source venv/bin/activate

10. Checking Package Dependencies

Understanding Dependencies:

pip show numpy

Working With Common Built-in Functions and Packages

1. os - Operating System Interface

To interact with the operating system:

import os
current_directory = os.getcwd() # Get the current working directory

2. sys - System-specific Parameters and Functions

To access system-specific parameters and functions:

import sys
sys.exit() # Exit the script

3. datetime - Basic Date and Time Types

To work with dates and times:

from datetime import datetime
now = datetime.now() # Current date and time

4. math - Mathematical Functions

To perform mathematical operations:

import math
result = math.sqrt(16) # Square root

5. random - Generate Pseudo-random Numbers

To generate pseudo-random numbers:

import random
number = random.randint(1, 10) # Random integer between 1 and 10

6. json - JSON Encoder and Decoder

To parse and generate JSON data:

import json
json_string = json.dumps({'name': 'Alice', 'age': 30}) # Dictionary to JSON string

7. re - Regular Expressions

To work with regular expressions:

import re
match = re.search('Hello', 'Hello, world!') # Search for 'Hello' in the string

8. urllib - URL Handling Modules

To work with URLs:

from urllib.request import urlopen
content = urlopen('http://example.com').read() # Fetch the content of a webpage

9. http - HTTP Modules

To create HTTP servers and work with HTTP requests:

from http.server import HTTPServer, BaseHTTPRequestHandler
class SimpleHTTPRequestHandler(BaseHTTPRequestHandler):    def do_GET(self):
self.send_response(200)
self.send_header('Content-type', 'text/html')
self.end_headers()
self.wfile.write(b'<html><head><title>Python HTTP Server</title></head>')
self.wfile.write(b'<body><h1>Hello from a simple Python HTTP server!</h1></body></html>')
def run(server_class=HTTPServer, handler_class=SimpleHTTPRequestHandler):
server_address = ('', 8000) # Serve on all addresses, port 8000
httpd = server_class(server_address, handler_class)
print("Server starting on port 8000...")
httpd.serve_forever()
if __name__ == '__main__':
run()

10. subprocess - Subprocess Management

To spawn new processes and connect to their input/output/error pipes:

import subprocess
subprocess.run(['ls', '-l']) # Run the 'ls -l' command

11. socket - Low-level Networking Interface

To create network clients and servers:

import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Create a TCP/IP socket

12. threading - Thread-based Parallelism

To manage concurrent execution of code:

import threading
def worker():
print("Worker thread executing")
thread = threading.Thread(target=worker)
thread.start()

13. multiprocessing - Process-based Parallelism

To manage concurrent processes:

from multiprocessing import Process
def worker():
print("Worker process")
p = Process(target=worker)
p.start()

14. argparse - Parser for Command-line Options, Arguments, and Sub-commands

To parse command-line arguments:

import argparse
parser = argparse.ArgumentParser(description="Process some integers.")
args = parser.parse_args()

15. logging - Logging Facility

To log messages (debug, info, warning, error, and critical):

import logging
logging.warning('This is a warning message')

16. unittest - Unit Testing Framework

To create and run unit tests:

import unittest
class TestStringMethods(unittest.TestCase):
def test_upper(self):
self.assertEqual('foo'.upper(), 'FOO')

17. pathlib - Object-oriented Filesystem Paths

To work with filesystem paths in an object-oriented way:

from pathlib import Path
p = Path('.')

18. functools - Higher-order Functions and Operations on Callable Objects

To use higher-order functions and operations on callable objects:

from functools import lru_cache
@lru_cache(maxsize=None)
def fib(n):
if n < 2:
return n
return fib(n-1) + fib(n-2)

19. collections - Container Data Types

To use specialized container data types (deque, Counter, OrderedDict, etc.):

from collections import Counter
c = Counter('hello world')

20. itertools - Functions Creating Iterators for Efficient Looping

To construct and use iterators for efficient looping:

import itertools
for combination in itertools.combinations('ABCD', 2):
print(combination)

21. hashlib - Secure Hash and Message Digest Algorithms

To hash data:

import hashlib
hash_object = hashlib.sha256(b'Hello World')
hex_dig = hash_object.hexdigest()

22. csv - CSV File Reading and Writing

To read from and write to CSV files:

import csv
with open('file.csv', mode='r') as infile:
reader = csv.reader(infile)

23. xml.etree.ElementTree - The ElementTree XML API

To parse and create XML data:

import xml.etree.ElementTree as ET
tree = ET.parse('file.xml')
root = tree.getroot()

24. sqlite3 - DB-API 2.0 Interface for SQLite Databases

To interact with SQLite databases:

import sqlite3
conn = sqlite3.connect('example.db')

25. tkinter - GUI Toolkit

To create GUI applications:

import tkinter as tk
root = tk.Tk()

26. pickle - Python Object Serialization

To serialize and deserialize Python object structures:

import pickle
serialized_obj = pickle.dumps(obj)

27. io - Core Tools for Working with Streams

To handle streams (file-like objects):

from io import StringIO
f = StringIO("some initial text data")

28. time - Time Access and Conversions

To access time-related functions:

import time
time.sleep(1) # Sleep for 1 second

29. calendar - General Calendar-related Functions

To work with calendars:

import calendar
print(calendar.month(2023, 1)) # Print the calendar for January 2023

30. queue - A Synchronized Queue Class

To manage a queue, useful in multithreaded programming:

from queue import Queue
q = Queue()

31. shutil - High-level File Operations

To perform high-level file operations, like copying and archiving:

import shutil
shutil.copyfile('source.txt', 'dest.txt')

32. glob - Unix Style Pathname Pattern Expansion

To find files matching a specified pattern:

import glob
for file in glob.glob("*.txt"):
print(file)

33. tempfile - Generate Temporary Files and Directories

To create temporary files and directories:

import tempfile
temp = tempfile.TemporaryFile()

34. bz2 - Support for Bzip2 Compression

To compress and decompress data using bzip2 compression:

import bz2
compressed = bz2.compress(b'your data here')

35. gzip - Support for Gzip Compression

To compress and decompress data using gzip compression:

import gzip
with gzip.open('file.txt.gz', 'wt') as f:
f.write('your data here')

36. ssl - TLS/SSL Wrapper for Socket Objects

To handle TLS/SSL encryption and peer authentication for network sockets:

import ssl
ssl.wrap_socket(sock)

37. imaplib - IMAP4 Protocol Client

To access and manipulate mail over IMAP4:

import imaplib
mail = imaplib.IMAP4_SSL('imap.example.com')

38. smtplib - SMTP Protocol Client

To send mail using the Simple Mail Transfer Protocol (SMTP):

import smtplib
server = smtplib.SMTP('smtp.example.com', 587)

39. email - Managing Email Messages

To manage email messages, including MIME and other RFC 2822-based message documents:

from email.message import EmailMessage
msg = EmailMessage()

40. base64 - Base16, Base32, Base64, Base85 Data Encodings

To encode and decode data using Base64:

import base64
encoded_data = base64.b64encode(b'data to encode')

41. difflib - Helpers for Computing Deltas

To compare sequences and produce human-readable diffs:

import difflib
diff = difflib.ndiff('one\ntwo\nthree\n'.splitlines(keepends=True),
'ore\ntree\nemu\n'.splitlines(keepends=True))
print(''.join(diff))

42. gettext - Multilingual Internationalization Services

To internationalize your Python programs:

import gettext
gettext.install('myapp')

43. locale - Internationalization Services

To access a database of culture-specific data formats:

import locale
locale.setlocale(locale.LC_ALL, '')

44. secrets - Generate Secure Random Numbers for Managing Secrets

To generate secure random numbers for managing secrets, such as tokens or passwords:

import secrets
secure_token = secrets.token_hex(16)

45. uuid - UUID Objects According to RFC 4122

To generate universally unique identifiers (UUIDs):

import uuid
unique_id = uuid.uuid4()

46. html - HyperText Markup Language Support

To handle and manipulate HTML entities:

import html
escaped = html.escape('<a href="https://example.com">link</a>')

47. ftplib - FTP Protocol Client

To interact with and transfer files over the FTP protocol:

from ftplib import FTP
ftp = FTP('ftp.example.com')

48. tarfile - Read and Write Tar Archive Files

To work with tar archive files, allowing you to archive and compress/decompress:

import tarfile
with tarfile.open('sample.tar.gz', 'w:gz') as tar:
tar.add('sample.txt')

Well, that’s all I have for now. I hope this list helps you get up to speed fast. If you like it, please share or give it a like (it helps a lot!).

Additionally, if you’d like a more in-depth and comprehensive guide to Python Development, there are two books on Amazon that I have found to be the best resources on Python out there for practical python development that I highly recommend. These books are:

  1. Python Crash Course — 3rd Edition
  2. Automate the Boring Stuff — 2nd Edition

No comments:

Must Watch YouTube Videos for Databricks Platform Administrators

  While written word is clearly the medium of choice for this platform, sometimes a picture or a video can be worth 1,000 words. Below are  ...