7 Vector Databases Every AI/ML/Data Engineer Should Know!
In the rapidly evolving fields of artificial intelligence (AI), machine learning (ML), and data engineering, the need for efficient data storage and retrieval systems is paramount. Vector databases have emerged as a critical solution for managing the complex, high-dimensional data that these technologies often rely on. Here, we explore seven vector databases that every AI/ML/data engineer should be familiar with, highlighting their unique features and how they support the demands of modern data-driven applications. 1. Milvus Milvus is an open-source vector database designed to handle large-scale similarity search and vector indexing. It supports multiple index types and offers highly efficient search capabilities, making it suitable for a wide range of AI and ML applications, including image and video recognition, natural language processing, and recommendation systems. Key Features: Highly scalable, supporting billions of vectors. Supports multiple metric types for similar...