Thursday, November 21, 2019

TensorFlow.JS — Using JavaScript Web Worker to Run ML Predict Function

This post is about Machine Learning on client-side. I will explain how to run ML model in JavaScript Web Worker. The model was trained in TensorFlow/Keras (using Python) to detect sentiment for a hotel review.

Andrej Baranovskij
Sep 7 · 5 min read
Source: Pixabay
  • How ML model was converted to be compatible with TensorFlow.js
  • JavaScript Web Worker to run TensorFlow.js predict function
JS app with TensorFlow.js
JS app with TensorFlow.js
JS app with TensorFlow.js
df = pd.read_csv('hotel-reviews.csv', nrows=100000)
df['REVIEW_TEXT'] = df['REVIEW_TEXT'].astype(str)
print('Number of rows ', df.shape[0])
model.fit(np.array(X_train_tokens), np.array(Y_train),
          validation_split=0.2, epochs=5, batch_size=128)
Model training results
tensorflowjs_converter --input_format keras hotel-reviews-model.h5 tensorflowjs/
  1. From app root folder run: ojet restore
  2. From app root folder run: ojet serve
if (!worker) {
  worker = new Worker("js/worker.js");
}worker.postMessage(seq);
worker.onmessage = function (event) {
  console.log('prediction: ' + event.data);
  self.negativityScore(event.data);
  self.sentiment(convertToSentiment(event.data));
};
importScripts('https://cdn.jsdelivr.net/npm/setimmediate@1.0.5/setImmediate.min.js');importScripts('https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@1.2.7/dist/tf.min.js');tf.setBackend('cpu');
onmessage = async function (event) {
  console.log('executing worker');
  seq = event.data;
  if (!model) {
    model = await createModel();
  }
  input = tf.tensor(seq);
  input = input.expandDims(0);
  predictOut = model.predict(input);
  score = predictOut.dataSync()[0];
  postMessage(score);
  predictOut.dispose();
};async function createModel() {
  const model = await tf.loadLayersModel('ml/model.json')
  return model
}

Towards Data Science

Sharing concepts, ideas, and codes.

You're following Towards Data Science.

You’ll see more from Towards Data Science across Medium and in your inbox.

1 comment:

Ankita Kumari said...

Thank you for sharing this informative post. Looking forward to read more.
Professional Website Development Services India

KQL OPER

  Understanding KQL Operators Let's take a look at Kusto Query Language (KQL) operators and how they can help build powerful queries. Un...